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Abstract

We prove that the motivic cohomology of mixed characteristic schemes, introduced in our
previous work, satisfies various expected properties of motivic cohomology, including a motivic
refinement of Weibel’s vanishing in algebraic K-theory, the projective bundle formula, a comparison
to Milnor K-theory, and a universal characterisation in terms of pro cdh descent. These results
extend those of Elmanto–Morrow to schemes which are not necessarily defined over a field.
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1 Introduction

This paper is a sequel to [Bou24], where we introduced a theory of motivic complexes Z(i)mot(X)
for general quasi-compact quasi-separated (qcqs) schemes X. This theory extends the construction
of Elmanto–Morrow [EM23] to schemes which are not necessarily defined over a field, and recovers
the classical theory of motivic cohomology when X is smooth over a field [EM23] or over a Dedekind
domain [BK25]. Our goal here is to prove several structural properties of the motivic complexes
Z(i)mot(X) for these possibly singular, mixed characteristic schemes X.

One of the most interesting, yet mysterious features of the algebraic K-theory of singular schemes
is the presence of nonzero negative K-groups. Most of the current understanding of negative K-groups
relies on results on the behaviour of algebraic K-theory with respect to blowups [CHSW08, KST18].
It was proved in particular by Thomason [Tho93] that algebraic K-theory sends the blowup square
associated to a regular closed immersion to a long exact sequence of K-groups. The following result is
a cohomological refinement of Thomason’s result.
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Theorem A (Regular blowup formula; see Theorem 4.18). For every regular closed immersion Y → X
of qcqs schemes (i.e., the closed subscheme Y is Zariski-locally on X defined by a regular sequence)
and every integer i ≥ 0, the commutative diagram

Z(i)mot(X) Z(i)mot(Y )

Z(i)mot(BlY (X)) Z(i)mot(BlY (X)×X Y )

is a cartesian square in the derived category D(Z).

However, algebraic K-theory fails to associate long exact sequences to general blowups. Motivated
by Grothendieck’s theorem on formal functions for quasi-coherent cohomology [Gro61, théorème 4.1.5],
many people hoped for a formal analogue of these long exact sequences in algebraic K-theory, that
would hold for general blowups. This was finally proved by Kerz–Strunk–Tamme [KST18], in the
form of a pro cdh excision property for the algebraic K-theory of arbitrary noetherian schemes. Note
that the pro cdh topology was recently introduced by Kelly–Saito [KS24], as a way to encode this pro
cdh excision property in a descent property for this Grothendieck topology. The following result is
one of our main technical results, and relies in particular on the description of the motivic complexes
Z(i)mot in terms of quasi-coherent information ([Bou24, Theorem B]) and on Grothendieck’s theorem
on formal functions, thus shedding some light on the analogy between quasi-coherent and K-theoretic
techniques.

Theorem B (Pro cdh descent; see Theorem 3.23). For every integer i ≥ 0, the presheaf Z(i)mot

satisfies pro cdh descent on noetherian schemes. That is, for every abstract blowup square

Y ′ X ′

Y X

of noetherian schemes, the associated commutative diagram

Z(i)mot(X) Z(i)mot(X ′)

{Z(i)mot(rY )}r {Z(i)mot(rY ′)}r

is a weakly cartesian square of pro objects in the derived category D(Z).

Theorem B is formally equivalent to the analogous statement for the presheaves Z(i)TC, introduced
in [Bou24]. Over a field, this was proved by Elmanto–Morrow by reduction to powers of the cotangent
complex [EM23, Section 8.1]. In mixed characteristic, the main new difficulty is to prove pro cdh
descent for the profinite completion of Z(i)TC, which is naturally expressed as a product over all
prime numbers p of contributions coming from integral p-adic Hodge theory. Surprisingly, this fact
ultimately relies on a statement purely in terms of the derived de Rham cohomology of characteristic
zero schemes (see Section 3.2). In particular, our proof of Theorem B does not follow the same strategy
as Kerz–Strunk–Tamme’s proof of pro cdh descent for algebraic K-theory (see Remark 3.24).

Kelly–Saito moreover proved that non-connective algebraic K-theory not only satisfies pro cdh
descent, but is the pro cdh sheafification of connective algebraic K-theory [KS24]. Combined with
the observation of Bhatt–Lurie that connective algebraic K-theory is left Kan extended on commu-
tative rings from smooth Z-algebras [EHK+20], this motivated the definition of the pro cdh motivic
complexes Z(i)procdh, as the pro cdh sheafification of the left Kan extension of the classical motivic
complexes Z(i)cla given by Bloch’s cycle complexes.
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Corollary C (Comparison to pro cdh motivic cohomology; see Theorem 3.32). Let X be a noetherian
scheme. Then for every integer i ≥ 0, there is a natural equivalence

Z(i)procdh(X)
∼−−→ Z(i)mot(X)

in the derived category D(Z).

The proof of Corollary C relies on pro cdh descent (Theorem B) and on the following comparison
to lisse motivic cohomology.

Note that the pro cdh motivic complexes Z(i)procdh are not finitary, so they cannot coincide with
the motivic complexes Z(i)mot on general qcqs schemes. However, together with the finitariness of
the Nisnevich sheaves Z(i)mot proved in [Bou24, Theorem C], this gives a universal cycle-theoretic
characterisation of the motivic complexes Z(i)mot on general qcqs schemes.

Theorem D (Comparison to lisse motivic cohomology; see Corollary 2.12). Let A be a local ring.
Then for every integer i ≥ 0, there is a natural equivalence

Z(i)lisse(A) ∼−−→ τ≤i Z(i)mot(A)

in the derived category D(Z), where Z(i)lisse denotes the weight-i lisse motivic cohomology of A, defined
as the left Kan extension from smooth Z-algebras of the classical motivic complex Z(i)cla. In particular,
the functor τ≤i Z(i)mot is left Kan extended on local rings from local essentially smooth Z-algebras.

Theorem D was first proved by Elmanto–Morrow for local rings over a field [EM23, Theorem 7.7], by
using the projective bundle formula and the comparison to classical motivic cohomology. We provide
a more direct argument, which does not rely on these ingredients, for this comparison to lisse motivic
cohomology, thus reproving in particular the result of Elmanto–Morrow in equicharacteristic.

For i = 1, this comparison to lisse motivic cohomology also implies that the motivic complex
Z(1)mot is related in the expected way to the unit and Picard groups (see Example 2.15). In turn,
this relation to the unit group, together with the multiplicative structure on the motivic complexes
Z(i)mot, induces symbol maps from Milnor K-theory to the Milnor range of motivic cohomology, and
we prove the following.

Theorem E (Milnor K-theory; see Theorem 2.21)). Let A be a henselian local ring. Then for any
integers i ≥ 0 and n ≥ 1, there is a natural isomorphism

K̂M
i (A)/n

∼=−−→ Hi
mot(A,Z(i))/n

of abelian groups, where K̂M
i (A) denotes the ith improved Milnor K-group of A in the sense of [Ker10].

The proof of Theorem E relies in particular on results of Lüders–Morrow in p-adic Hodge theory
[LM23]. Note that for local rings over a field, Elmanto–Morrow proved this result with Z-coefficients
and without assuming the local ring to be henselian [EM23, Theorem 7.12]. Although we expect the
same result to hold for general local rings, even the smooth case is open in mixed characteristic (see
Remark 2.22).

Similarly, one can use the relation to the Picard group in weight one and the multiplicative structure
on the motivic complexes Z(i)mot to formulate the projective bundle formula, as we explain now.

Assuming the existence of a well-behaved derived category of motives Dmot(X), the motivic coho-
mology groups of a scheme X should be given by

Hj
mot(X,Z(i)) ∼= HomDmot(X)(M(X),Z(i)[j]),

where M(X) ∈ Dmot(X) is the motive associated to X, and Z(i) ∈ Dmot(X) are the Tate motives,
fitting for every integer r ≥ 0 in a natural decomposition in Dmot(X):

M(Pr
Z)
∼=

r⊕
j=0

Z(j)[2j].
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In the A1-invariant framework, Voevodsky constructed such a derived category of motives, in which the
classical motivic complexes Z(i)cla can be interpreted in terms of these Tate motives. Without assuming
A1-invariance, Annala–Iwasa [AI23] and Annala–Hoyois–Iwasa [AHI23, AHI24] recently introduced a
more general derived category of motives, where the decomposition of the motive M(Pr

Z), i.e., the
projective bundle formula, is isolated as the key defining property. The following result states that the
motivic complexes Z(i)mot fit within this theory of non-A1-invariant motives.

Theorem F (Projective bundle formula; see Theorem 4.19). Let X be a qcqs scheme, i ≥ 0 be an
integer, and E be a vector bundle of rank r on X. Then for every integer i ≥ 0, the powers of the
motivic first Chern class cmot

1 (O(1)) ∈ Pic(PX(E)) ∼= H2
mot(PX(E),Z(1)) induce a natural equivalence

r−1⊕
i=0

Z(i− j)mot(X)[−2j] ∼−−→ Z(i)mot(PX(E))

in the derived category D(Z).

Theorem F is proved by Elmanto–Morrow in the equicharacteristic case [EM23], where the proof
relies on the projective bundle formula for the complexes Z(i)cdh [BEM]. In mixed characteristic,
however, the cdh-local motivic complexes Z(i)cdh are known to satisfy the projective bundle formula
only conditionally on a certain property of valuation rings, called F -smoothness [BM23, BEM]. This
condition can be proved in mixed characteristic for valuation rings over a perfectoid base: this is the
main result of [Bou23]. The case of general valuation rings remaining open, our proof of Theorem F is
different from that of Elmanto–Morrow, and uses in particular our description of motivic cohomology
with finite coefficients in terms of syntomic cohomology ([Bou24, Theorem 5.10]) and a special case of
Theorem A.

Finally, we explain how the previous results, and in particular pro cdh descent, can be used to give
a motivic description of the negative K-groups of singular schemes.

An important conjecture of Weibel [Wei80] states that for every noetherian scheme X of dimension
at most d, the negative K-groups K−n(X) vanish for integers n > d. This conjecture was settled
by Kerz–Strunk–Tamme [KST18], as a consequence of pro cdh descent for algebraic K-theory. The
proof of the following result uses the techniques of Kerz–Strunk–Tamme [KST18] as reformulated by
Elmanto–Morrow [EM23], who proved the same result over a field. In particular, Theorem G relies
on pro cdh descent for motivic cohomology (Theorem B) and on Antieau–Mathew–Morrow–Nikolaus’
rigidity theorem for syntomic cohomology ([AMMN22, Theorem 5.2]).

Theorem G (Motivic Weibel vanishing; see Theorem 3.27). Let X be a noetherian scheme of finite
dimension d, and i ≥ 0 be an integer. Then for every integer j > i+ d, the motivic cohomology group
Hj

mot(X,Z(i)) is zero.

Via the Atiyah–Hirzebruch spectral sequence relating motivic cohomology to algebraic K-theory
([Bou24, Theorem C]), Theorem G is a motivic refinement of Weibel’s vanishing conjecture inK-theory.
Moreover, this result also implies a new cohomological description of the lowest nonzero negative
K-groups (see Corollary 3.30).

Notation
Given a commutative ring R, an R-algebra S, and a scheme X over Spec(R), denote by XS the

base change X ×Spec(R) Spec(S) of X from R to S. If X is a derived scheme, this base change is
implicitly the derived base change from R to S. We sometimes use the derived base even on classical
schemes, and say explicitly when we do so.

Given a commutative ring R, denote by D(R) the derived category of R-modules; it is implicitly
the derived ∞-category of R-modules, and is in particular naturally identified with the category of
R-linear spectra. Given an element d of R, also denote by (−)∧d the d-adic completion functor in the
derived category D(R).

Given a commutative ring R and an ideal I of R, the pair (R, I) is called henselian if it satisfies
Hensel’s lemma. A local ring R is called henselian if the pair (R,m) is henselian, where m is the maximal
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ideal of R. Henselian local rings are the local rings for the Nisnevich topology. A commutative ring
R is called d-henselian, for d an element of R, if the pair (R, (d)) is henselian. A functor F (−) on
commutative rings is called rigid if for every henselian pair (R, I), the natural map F (R) → F (R/I)
is an equivalence.

We use several Grothendieck topologies, including the Zariski, Nisnevich, and cdh topologies. De-
note by LZar, LNis, and Lcdh the sheafification functors for these topologies.
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2 Comparison to Milnor K-theory and lisse motivic
cohomology

In this section, we study the motivic complexes Z(i)mot on local rings. We prove that these are
left Kan extended, in degrees at most i, from local essentially smooth Z-algebras (Theorem 2.11). Via
the comparison to syntomic cohomology in the smooth case ([Bou24, Theorem D (3)]), this means
that the motivic complexes Z(i)mot are controlled, up to degree i, by classical motivic cohomology
(Corollary 2.12). We use the latter result to construct a comparison map from the ith (improved)
Milnor K-group of a general local ring A to the motivic cohomology group Hi

mot(A,Z(i)), and prove
that this map is an isomorphism with finite coefficients (Theorem 2.21).

2.1 Comparison to lisse motivic cohomology
In this subsection, we prove a comparison between motivic cohomology and lisse motivic cohomol-

ogy on general local rings (Corollary 2.12), which generalises to mixed characteristic the analogous
comparison result of Elmanto–Morrow over a field ([EM23, Theorem 7.7]). To do so, we use the follow-
ing comparison map, where lisse motivic cohomology is defined on animated commutative rings as the
left Kan extension of classical motivic cohomology from smooth Z-algebras ([Bou24, Definition 3.7]).

Definition 2.1 (Lisse-motivic comparison map). For every integer i ∈ Z, the lisse-motivic comparison
map is the map

Z(i)lisse(−) −→ Z(i)mot(−)

of functors from animated commutative rings to the derived category D(Z) defined as the composite(
LAniRings/SmZ Z(i)

cla)(−) −→ (
LAniRings/SmZ Z(i)

mot)(−) −→ Z(i)mot(−),

where the first map is the map induced by [Bou24, Definition 3.23] and the second map is the canonical
map.

Lemma 2.2. For every integer i ≥ 0, the functor

τ≤2i Q(i)mot(−) : AniRings −→ D(Q)

is left Kan extended from smooth Z-algebras.

Proof. By [EHK+20, Example 1.0.6], connective algebraic K-theory

τ≤0K(−;Q) : AniRings −→ D(Q)
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is left Kan extended from smooth Z-algebras. By [Bou24, Corollary 4.56], this implies that the functor⊕
i≥0

τ≤0
(
Q(i)mot(−)[2i]

)
: AniRings −→ D(Q)

is left Kan extended from smooth Z-algebras, which is equivalent to the desired result.

Corollary 2.3. Let R be an animated commutative ring. Then for every integer i ≥ 0, the lisse-motivic
comparison map induces a natural equivalence

Q(i)lisse(R)
∼−−→ τ≤2i Q(i)mot(R)

in the derived category D(Q).

Proof. If R is a smooth Z-algebra, the result is a consequence of the rational splitting of algebraic
K-theory induced by Adams operations and of the fact that, by construction, the classical motivic
complex Z(i)cla(R) ∈ D(Z) is in degrees at most 2i. In general, this is then a consequence of Lemma 2.2.

Proposition 2.4. Let R be a local ring. Then for every integer i ≥ 0, the lisse-motivic comparison
map induces a natural equivalence

Q(i)lisse(R) −→ τ≤i Q(i)mot(R)

in the derived category D(Q). Moreover, the motivic cohomology group Hj
mot(R,Q(i)) is zero for

i < j ≤ 2i.

Proof. The classical motivic complex Z(i)cla(−) is Zariski-locally in degrees at most i ([Gei04, Corol-
lary 4.4]). By taking left Kan extension, this implies that the lisse motivic complex Z(i)lisse(−) is also
Zariski-locally in degrees at most i. In particular, the lisse motivic complex Q(i)lisse(R) is in degrees
at most i. The result is then a consequence of Corollary 2.3.

Remark 2.5. By Drinfeld’s theorem ([Dri06, Theorem 3.7]), the K-group K−1(R) vanishes for every
henselian local ring R. By [Bou24, Corollary 4.60], this implies that for every integer i ≥ 0, the motivic
cohomology group H2i+1

mot (R,Q(i)) is zero, i.e., that the motivic cohomology group H2i+1
mot (R,Z(i)) is

torsion.

Corollary 2.6. For every integer i ≥ 0, the functor τ≤i Q(i)mot, from local rings to the derived
category D(Q), is left Kan extended from local essentially smooth Z-algebras.

Proof. This is a consequence of Lemma 2.2 and Proposition 2.4.

Proposition 2.7. Let p be a prime number, and k be an integer. Then for every integer i ≥ 0, the
functor

τ≤i Z /pk(i)mot(−) : Rings −→ D(Z /pk)

is left Kan extended from smooth Z-algebras.

Proof. By [Bou24, Theorem 5.10], this is equivalent to the fact that the functor τ≤i Z /pk(i)syn(−) on
commutative rings is left Kan extended from smooth Z-algebras. The functor Z /pk(i)syn(−) is left
Kan extended from smooth Z-algebras ([Bou24, Notation 5.7]), so this is equivalent to the fact that
the functor τ>i Z /pk(i)syn(−) on commutative rings is left Kan extended from smooth Z-algebras. By
[EM23, Lemma 7.6], it then suffices to prove that the functor τ>i Z /pk(i)syn(−) is rigid. To prove
this, consider the fibre sequence of D(Z /pk)-valued functors

RΓét(−, j!µ⊗i
pk ) −→ Z /pk(i)syn(−) −→ Z /pk(i)BMS(−)

on commutative rings ([BL22, Remark 8.4.4]). By rigidity for étale cohomology ([Gab94], see also
[BM21, Corollary 1.18 (1)]), the first term of this fibre sequence is rigid. The desired result is then a
consequence of [Bou24, Theorem 2.27].
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Corollary 2.8. Let p be a prime number, and k ≥ 1 be an integer. Then for every integer i ≥ 0, the
functor τ≤i Z /pk(i)mot, from local rings to the derived category D(Z /pk), is left Kan extended from
local essentially smooth Z-algebras.

Proof. This is a consequence of Proposition 2.7.

Lemma 2.9. Let R be a local ring, p be a prime number, and k ≥ 1 be an integer. Then for every
integer i ≥ 0, the natural map of abelian groups

Hi
mot(R,Z(i)) −→ Hi

mot(R,Z /pk(i))

is surjective.

Proof. Let P → R be a henselian surjection, where P is a local ind-smooth Z-algebra. By Corollary 2.8,
the functor τ≤i Z /pk(i)mot is left Kan extended on local rings from local essentially smooth Z-algebras,
so the natural map of abelian groups

Hi
mot(P,Z /pk(i)) −→ Hi

mot(R,Z /pk(i))

is surjective. That is, the right vertical map in the commutative diagram of abelian groups

Hi
mot(P,Z(i)) Hi

mot(P,Z /pk(i))

Hi
mot(R,Z(i)) Hi

mot(R,Z /pk(i))

is surjective. To prove that the bottom horizontal map is surjective, it thus suffices to prove that
the top vertical map is surjective. The local ring P is a filtered colimit of local essentially smooth
Z-algebras, so it suffices to prove that this top vertical map is surjective for local essentially smooth
Z-algebras. To prove this, it suffices to prove that the motivic complex Z(i)mot(−) is zero in degree i+1
on local essentially smooth Z-algebras, which is a formal consequence of [Bou24, Theorem 5.10] and
[Gei04, Corollary 4.4].

Corollary 2.10. Let R be a local ring. Then for every integer i ≥ 1, the motivic cohomology group
Hi+1

mot(R,Z(i)) is zero. If the local ring R is moreover henselian, then the motivic cohomology group
H1

mot(R,Z(0)) is zero.

Proof. By Lemma 2.9 and the short exact sequence of abelian groups

0 −→ Hi
mot(R,Z(i))/p −→ Hi

mot(R,Fp(i)) −→ Hi+1
mot(R,Z(i))[p] −→ 0

for every prime number p and every integer i ≥ 0, the abelian group Hi+1
mot(R,Z(i)) is torsionfree. By

Proposition 2.4 if i ≥ 1, and by Remark 2.5 if i = 0 and R is henselian, it is also torsion, so it is
zero.

Theorem 2.11. For every integer i ≥ 0, the functor τ≤i Z(i)mot, from local rings to the derived
category D(Z), is left Kan extended from local essentially smooth Z-algebras.

Proof. It suffices to prove the result rationally, and modulo p for every prime number p. The result
rationally is Corollary 2.6. Let p be a prime number. For every local ring R, the natural map of
abelian groups

Hi
mot(R,Z(i)) −→ Hi

mot(R,Fp(i))

is surjective by Lemma 2.9, so the natural map(
τ≤i Z(i)mot(R)

)
/p −→ τ≤i Fp(i)

mot(R)

is an equivalence in the derived category D(Fp). The result modulo p is then Corollary 2.8.
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Note that the proof of Theorem 2.11 is similar to the proof of Elmanto–Morrow in equicharac-
teristic. The following consequence, however, uses the comparison to syntomic cohomology [Bou24,
Theorem 5.10] in the case of smooth Z-schemes. The proof of the latter, in any characteristic, is some-
how simpler than the proof of Elmanto–Morrow’s (stronger) comparison result to classical motivic
cohomology: in particular, it does not use a presentation lemma, or the projective bundle formula.
The proof of Corollary 2.12 then provides an alternative argument to the proof of [EM23, Theorem 7.7].

Corollary 2.12 (Comparison to lisse motivic cohomology). Let R be a local ring. Then for every
integer i ≥ 0, the lisse-motivic comparison map induces a natural equivalence

Z(i)lisse(R) ∼−−→ τ≤i Z(i)mot(R)

in the derived category D(Z).
Proof. The classical motivic complex Z(i)cla(−) is Zariski-locally in degrees at most i ([Gei04, Corol-
lary 4.4]). By [Bou24, Theorem 5.10] and the rational splitting of algebraic K-theory induced by
Adams operations, the classical-motivic comparison map Z(i)cla(−) → Z(i)mot(−) is an isomorphism
in degrees less than or equal to i on smooth Z-schemes. The result is then a consequence of Theo-
rem 2.11.

In the rest of this section, we restrict our attention to henselian local rings, in order to describe the
motivic cohomology group H2

mot(−,Z(1)).
Lemma 2.13. Let R be a henselian local ring, and p be a prime number. Then for any integers i ≥ 0
and k ≥ 1, the motivic cohomology group Hi+1

mot(R,Z /pk(i)) is zero.

Proof. By [Bou24, Theorem 5.10], the motivic cohomology group Hi+1
mot(R,Z /pk(i)) is naturally iden-

tified with the kernel of the natural map of abelian groups

Hi+1(Z /pk(i)syn(R)) −→ Hi+1((Lcdhτ
>i Z /pk(i)syn)(R))

for every commutative ring R. If R is henselian local, let m be its maximal ideal, and consider the
natural commutative diagram

Hi+1(Z /pk(i)syn(R)) Hi+1((Lcdhτ
>i Z /pk(i)syn)(R))

Hi+1(Z /pk(i)syn(R/m)) Hi+1((Lcdhτ
>i Z /pk(i)syn)(R/m))

of abelian groups. The functor τ>i Z /pk(i)syn is rigid (proof of Proposition 2.7), so the left vertical
map is an isomorphism. The field R/m is a local ring for the cdh topology, so the bottom horizontal
map is an isomorphism. In particular, the top horizontal map is injective.

Proposition 2.14. Let R be a henselian local ring. Then for every integer i ≥ 1, the motivic coho-
mology group Hi+2

mot(R,Z(i)) is zero.

Proof. By Lemma 2.13 and the short exact sequence of abelian groups

0 −→ Hi+1
mot(R,Z(i))/p −→ Hi+1

mot(R,Fp(i)) −→ Hi+2
mot(R,Z(i))[p] −→ 0

for every prime number p, the abelian group Hi+2
mot(R,Z(i)) is torsionfree. By Proposition 2.4 if i ≥ 2,

and by Remark 2.5 if i = 1, it is also torsion, so it is zero.

The following example is a consequence of [Bou24, Example 3.9], Corollary 2.12, and Proposi-
tion 2.14.

Example 2.15. For every qcqs scheme X, the natural map

RΓNis(X,Gm)[−1] −→ Z(1)mot(X),

defined as the Nisnevich sheafification of the lisse-motivic comparison map (see also Definition 4.1), is
an isomorphism in degrees at most three. That is, the motivic complex Z(1)mot(X) vanishes in degrees
at most zero, and there are natural isomorphisms of abelian groups

H1
mot(X,Z(1)) ∼= O(X)×, H2

mot(X,Z(1)) ∼= Pic(X), H3
mot(X,Z(1)) ∼= H2

Nis(X,Gm).
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2.2 Comparison to Milnor K-theory
In this subsection, we construct, for every integer i ≥ 1, a symbol map

KM
i (A) −→ Hi

mot(A,Z(i))

for local rings A (Definition 2.18), through which we compare the Milnor K-groups to motivic co-
homology (Theorem 2.21). Note that the arguments in Lemmas 2.17 and 2.19 are very similar to
that of [EM23, Section 7], except for the Gersten injectivity for classical motivic cohomology, which is
unknown integrally in mixed characteristic.

For every commutative ring A, the lisse-motivic comparison map (Definition 2.1 and [Bou24, Ex-
ample 3.9]) induces on H1 a natural isomorphism of abelian groups

A× ∼=−−→ H1
mot(A,Z(1)).

By multiplicativity of the motivic complexes, this induces, for every integer i ≥ 0, a symbol map of
abelian groups

(A×)⊗i −→ Hi
mot(A,Z(i)).

Lemma 2.16. For every local essentially smooth Z-algebra A, there is a natural isomorphism

H2
mot(A,Z(2)) ∼= K2(A)

of abelian groups.

Proof. By Corollary 2.12, the classical-motivic comparison map

H2
cla(A,Z(2)) −→ H2

mot(A,Z(2))

is an isomorphism of abelian groups. The result is then a consequence of the Atiyah–Hirzebruch
spectral sequence for classical motivic cohomology ([Bou24, Remark 3.3]), where we use that the
classical motivic complex Z(1)cla(A) ∈ D(Z) is concentrated in degree one ([Bou24, Example 3.5] and
[Gei04, Corollary 4.4]).

Lemma 2.17. Let A be a local ring. Then for every integer i ≥ 0, the natural map of abelian groups

(A×)⊗i −→ Hi
mot(A,Z(i))

induced by the lisse-motivic comparison map factors through the Milnor K-group KM
i (A).

Proof. By definition of the Milnor K-groups, it suffices to prove that the symbol map respects the
Steinberg relations. Let a ∈ A be an element such that a and 1− a are units in A. By multiplicativity
of the motivic complexes, it suffices to consider the case i = 2 and to prove that a⊗ (1− a) is sent to
zero via the symbol map. Let Z[t]→ A be the ring homomorphism sending t to a, and let p ⊂ Z[t] be
the prime ideal defined as the inverse image of the maximal ideal of A via this ring homomorphism.
By naturality of the symbol map, the diagram of abelian groups

(Z[t]p)× ⊗Z (Z[t]p)× H2
mot(Z[t]p,Z(2))

A× ⊗Z A
× H2

mot(A,Z(2))

is commutative. It then suffices to prove that the top horizontal arrow of this diagram sends t⊗ (1− t)
to zero. The local ring Z[t]p is essentially smooth over Z, so the right vertical map of the commutative
diagram of abelian groups

(Z[t]p)× ⊗Z (Z[t]p)× H2
mot(Z[t]p,Z(2))

(Frac(Z[t]p))× ⊗Z (Frac(Z[t]p))× H2
mot(Frac(Z[t]p),Z(2))

9
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is injective. Indeed, by Lemma 2.16 this is equivalent to the fact that the natural map

K2(A) −→ K2(Frac(A))

is injective, and this is the Gersten injectivity for K2 ([GL87, Corollary 6] and [DS75, Theorem 2.2]).
It then suffices to prove that the bottom horizontal map of this diagram sends t ⊗ (1 − t) to zero.
This is a consequence of the fact that the symbol map to classical motivic cohomology respects the
Steinberg relation for fields ([NS89], see also [Tot92]).

Definition 2.18 (Symbol map). Let A be a local ring. For every integer i ≥ 0, the symbol map

KM
i (A) −→ Hi

mot(A,Z(i))

is the natural map of abelian groups of Lemma 2.17.

Following [Ker10], for A a local ring and i ≥ 0 an integer, we denote by K̂M
i (A) the ith improved

Milnor K-group of A.

Lemma 2.19. Let A be a local ring. Then for every integer i ≥ 0, the symbol map

KM
i (A) −→ Hi

mot(A,Z(i))

factors through the improved Milnor K-group K̂M
i (A).

Proof. Let Mi ≥ 1 be the integer defined in [Ker10]. If the residue field of the local ring A has at least
Mi elements, then the natural map

KM
i (A) −→ K̂M

i (A)

is an isomorphism of abelian groups ([Ker10, Proposition 10 (5)]). Assume now that the residue field
of the local ring A has less than Mi elements. We want to prove that the symbol map

KM
i (A) −→ Hi

mot(A,Z(i))

factors through the surjective map KM
i (A) → K̂M

i (A), i.e., that every element of the abelian group
ker(KM

i (A) → K̂M
i (A)) is sent to zero by the previous symbol map. Let m be the maximal ideal of

the local ring A, and p be its residue characteristic. The residue field A/m of the local ring A is
isomorphic to a finite extension Fq of Fp. Let ℓ ≥ 1 be an integer which is coprime to the degree of
this extension, and such that pℓ ≥Mi. As a tensor product of finite field extensions of coprime degree,
the commutative ring Fq ⊗Fp

Fpℓ is a field. Let V be the finite étale extension of Z(p) corresponding
to the field extension Fpℓ of Fp. The commutative ring A′ := A ⊗Z(p)

V is finite over the local ring
A, and the quotient A′/mA′ is a field, so the commutative ring A′ is a local A-algebra, whose residue
field has at least Mi elements.

Let P• → A be a simplicial resolution of the local ring A where each term Pm is a local ind-smooth
Z-algebra, and each face map Pm+1 → Pm is a henselian surjection. By Theorem 2.11, there is then a
natural equivalence

colim
m

τ≤i Z(i)mot(Pm)
∼−−→ τ≤i Z(i)mot(A)

in the derived category D(Z). In particular, this equivalence induces a natural isomorphism

coeq
(
Hi

mot(P1,Z(i)) −→−→ Hi
mot(P0,Z(i))

) ∼=−−→ Hi
mot(A,Z(i))

of abelian groups, where the motivic cohomology groups in the left term are naturally identified with
classical motivic cohomology groups by Corollary 2.12. Similarly, P• ⊗Z(p)

V → A′ is a simplicial
resolution of the local ring A′ where each term Pm ⊗Z(p)

V is an ind-smooth V -algebra, and each face
map Pm+1 ⊗Z(p)

V → Pm ⊗Z(p)
V is a henselian surjection, so there is a natural isomorphism

coeq
(
Hi

mot(P1 ⊗Z(p)
V,Z(i)) −→−→ Hi

mot(P0 ⊗Z(p)
V,Z(i))

) ∼=−−→ Hi
mot(A

′,Z(i))

10
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of abelian groups, where the motivic cohomology groups of the left term are naturally identified with
classical motivic cohomology groups. Classical motivic cohomology of smooth schemes over a mixed
characteristic Dedekind domain admits functorial transfer maps along finite étale morphisms, so the
previous two isomorphisms induce a transfer map

Nℓ : Hi
mot(A

′,Z(i)) −→ Hi
mot(A,Z(i))

such that pre-composition with the natural map Hi
mot(A,Z(i))→ Hi

mot(A
′,Z(i)) is multiplication by ℓ.

In particular, the kernel of the natural map Hi
mot(A,Z(i))→ Hi

mot(A
′,Z(i)) is ℓ-torsion.

Consider the commutative diagram

KM
i (A) KM

i (A′)

Hi
mot(A,Z(i)) Hi

mot(A
′,Z(i))

of abelian groups, and let x be an element of the abelian group ker(KM
i (A)→ K̂M

i (A)). The residue field
of the local ring A′ has at least Mi elements, so the natural map KM

i (A′)→ K̂M
i (A′) is an isomorphism

([Ker10, Proposition 10 (5)]), and x is sent to zero by the top horizontal map. In particular, the image
of x by the left vertical map is in the kernel of the bottom horizontal map, and is thus ℓ-torsion by the
previous paragraph. Let ℓ′ ≥ 1 be an integer which is coprime to ℓ and to the degree of Fq over Fp,
and such that pℓ

′ ≥Mi. The previous argument for this integer ℓ′ implies that the image of x by the
left vertical map is also ℓ′-torsion, hence it is zero.

Conjecture 2.20. Let A be a local ring. Then for every integer i ≥ 0, the natural map

K̂M
i (A) −→ Hi

mot(A,Z(i))

induced by Lemma 2.19 is an isomorphism of abelian groups.

The previous conjecture was proved by Elmanto–Morrow for equicharacteristic local rings ([EM23,
Theorem 7.12]). Their proof uses as an input the analogous result in the smooth case for classical
motivic cohomology, which is unknown in mixed characteristic (see Remark 2.22).

Theorem 2.21 (Singular Nesterenko–Suslin isomorphism with finite coefficients). Let A be a henselian
local ring. Then for any integers i ≥ 0 and n ≥ 1, the natural map

K̂M
i (A)/n −→ Hi

mot(A,Z(i))/n

is an isomorphism of abelian groups.

Proof. If the local ring A contains a field, then the natural map

K̂M
i (A) −→ Hi

mot(A,Z(i))

is an isomorphism of abelian groups ([EM23, Theorem 7.12]). Otherwise, A is a henselian local ring
of mixed characteristic (0, p) for some prime number p. In particular, the local ring A is p-henselian.
If p does not divide the integer n, then consider the commutative diagram

K̂M
i (A)/n Hi

mot(A,Z(i))/n

K̂M
i (A/p)/n Hi

mot(A/p,Z(i))/n

of abelian groups. The left vertical map is an isomorphism by [Ker10, Proposition 10 (7)]. By
Lemma 2.9 and [Bou24, Corollary 5.6], the right vertical map is naturally identified with the nat-
ural map of abelian groups

Hi
ét(A,µ

⊗i
n ) −→ Hi

ét(A/p, µ
⊗i
n ),

11



TESS BOUIS

which is an isomorphism by rigidity of étale cohomology ([Gab94], see also [BM21, Corollary 1.18 (1)]).
The local ring A/p is an Fp-algebra, so the bottom horizontal map is an isomorphism ([EM23, The-
orem 7.12]), and the result is true in this case. It then suffices to prove that for every integer k ≥ 1,
the natural map

K̂M
i (A)/pk −→ Hi

mot(A,Z(i))/pk

is an isomorphism of abelian groups. By Lemma 2.9 and [Bou24, Corollary 5.11], the natural map

Hi
mot(A,Z(i))/pk −→ Hi(Z /pk(i)BMS(A))

is an isomorphism of abelian groups. By [LM23, Theorem 3.1], the composite map

K̂M
i (A)/pk −→ Hi

mot(A,Z(i))/pk −→ Hi(Z /pk(i)BMS(A))

is an isomorphism of abelian groups, hence the desired result.

Remark 2.22. If Conjecture 2.20 is true for local ind-smooth Z-algebras, then the left Kan extension
properties [LM23, Proposition 1.17] and Theorem 2.11 imply that Conjecture 2.20 is true for all local
rings. See the proof of [EM23, Theorem 7.12] for more details.

Remark 2.23. Let A be a local essentially smooth Z-algebra, i ≥ 0 be an integer, and consider the
commutative diagram

K̂M
i (A) Hi

mot(A,Z(i))

K̂M
i (Frac(A)) Hi

mot(Frac(A),Z(i))

of abelian groups. The bottom horizontal map is an isomorphism by the Nesterenko–Suslin isomor-
phism for fields ([NS89], see also [EM23, Theorem 7.12]). The left vertical being injective then implies
that the top horizontal map is injective. That is, the Gersten injectivity conjecture for the improved
Milnor K-groups would imply the injectivity part of Conjecture 2.20. Knowing the Gersten injectiv-
ity conjecture for the motivic cohomology group Hi

mot(−,Z(i)) would imply that these two facts are
equivalent. See [Lüd22] for related results on the Gersten conjecture for improved Milnor K-groups.

3 Weibel vanishing and pro cdh descent
In this section, we study the motivic complexes Z(i)mot on noetherian schemes. We prove a general

vanishing result which refines Weibel’s vanishing conjecture on negative K-groups (Theorem 3.27),
and prove that they coincide with Kelly–Saito’s pro cdh motivic complexes Z(i)procdh (Theorem 3.32).
The key input for both these results is the fact that the motivic complexes Z(i)mot satisfy pro cdh
excision (Theorem 3.23), i.e., that they send abstract blowup squares to pro cartesian squares.

Notation 3.1 (Abstract blowup square). An abstract blowup square (of noetherian schemes) is a
cartesian square

Y ′ X ′

Y X

(3.1.1)

of qcqs schemes (resp. of noetherian schemes) such that X ′ → X is proper and finitely presented,
Y → X is a finitely presented closed immersion, and the induced map X ′ \ Y ′ → X \ Y is an iso-
morphism. In this context, we also denote, for every integer r ≥ 0, by rY (resp. rY ′) the r − 1st

infinitesimal thickening of Y inside X (resp. of Y ′ inside X ′).

We use Kelly–Saito’s recent definition in [KS24] of the pro cdh topology to encode the fact that a
Nisnevich sheaf (e.g., the motivic complex Z(i)mot) satisfies pro cdh excision. Kelly–Saito proved in
particular that if S has finite valuative dimension and noetherian topological space, then the pro cdh
topos of S is hypercomplete and has enough points. For our purposes, the following definition will be
used only for noetherian schemes S.

12
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Definition 3.2 (Pro cdh descent, after [KS24]). Let S be a qcqs scheme. A pro cdh sheaf on finitely
presented S-schemes is a presheaf

F : Schfp,op
S −→ D(Z)

satisfying Nisnevich descent, and such that for every abstract blowup square of finitely presented
S-schemes (3.1.1), the natural commutative diagram

F (X) F (X ′)

{F (rY )}r {F (rY ′)}r

is a weakly cartesian square of pro objects in the derived category D(Z).1

3.1 Pro cdh descent for the cotangent complex
In this subsection, we review the pro cdh descent for powers of the cotangent complex on noetherian

schemes (Proposition 3.9). On finite-dimensional noetherian schemes, this is [Mor16, Theorem 2.10].
On general noetherian schemes, the proof follows the sketch presented in [EM23, proof of Lemma 8.5].
In particular, the arguments are exactly as in [Mor16], except for the following generalisation of
Grothendieck’s formal functions theorem ([Gro61, Corollary 4.1.7]), where the finite dimensionality
hypothesis is removed. We give some details for the sake of completeness.

For every commutative ring A, recall that a pro A-module {Mr}r is zero if for every index r, there
exists an index r′ ≥ r such that the map Mr′ →Mr is the zero map. Similarly, a map {Mr}r → {Nr}r
of pro A-modules is an isomorphism if its kernel and cokernel are zero pro A-modules. We say that a
pro object {Cr}r in the derived category D(A) is weakly zero if all its cohomology groups are zero pro
A-modules. Note that all the pro complexes that we will consider are uniformly bounded above, so
this definition is equivalent to being weakly zero in the stable∞-category of pro objects in the derived
category D(A) ([LT19, Definition 2.27]). Similarly, we say that a map {Cr}r → {C ′

r}r of pro objects
in the derived category D(A) is a weak equivalence if its fibre is weakly zero as a pro object in the
derived category D(A).

Lemma 3.3 (Formal functions theorem, after Lurie [Lur19]). Let A be a noetherian commutative ring,
I be an ideal of A, X be a proper scheme over Spec(A), and X∧

I be the formal completion of X along
the vanishing locus of I. Then for every coherent sheaf F over X, the natural map

RΓZar(X,F) −→ RΓZar(X
∧
I ,F∧

I )

where F∧
I is the pullback of F along the natural map X∧

I → X, exhibits the target as the I-adic
completion2 of the source in the derived category D(A). More precisely, the natural map

{RΓZar(X,F)/Ir}r −→ {RΓZar(X ×Spec(A) Spec(A/Ir),F ⊗L
OX
OX/I

rOX)}r

is a weak equivalence of pro objects in the derived category D(A).

Proof. The first statement is a special case of [Lur19, Lemma 8.5.1.1]. The second statement, although
a priori stronger, follows by an examination of the previous proof (and in particular, the proof of [Lur19,
Lemma 8.1.2.3]).

Lemma 3.4. Let A be a noetherian commutative ring, and X be a proper scheme over Spec(A). Then
for any integers j ≥ 0 and n ∈ Z, the A-module Hn

Zar(X,L
j
−/A) is finitely generated.

1By this, we mean that all the cohomology groups of the total fibre of this commutative square are zero as pro abelian
groups. All the presheaves F that we will consider (most importantly, the presheaves Z(i)mot) are bounded above on
noetherian schemes, by a constant depending only on the dimension of their input (for the motivic complexes Z(i)mot,
this is [Bou24, Proposition 4.49]); this definition of weakly cartesian square will then be equivalent to being weakly
cartesian in the stable ∞-category of pro objects in the derived category D(Z), in the sense of [LT19, Definition 2.27].

2The cohomology groups of these coherent sheaves are finitely generated A-modules (because X is proper over
Spec(A)), so the derived I-adic completion and the classical I-adic completion coincide in this context.

13
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Proof. The scheme X is of finite type over Spec(A), so the OX -module Hn
Zar(−,L

j
−/A) is coherent.

Because X is proper over Spec(A), its cohomology groups are thus finitely generated A-modules.

Corollary 3.5. Let A be a noetherian commutative ring, I be an ideal of A, and X be a noetherian
scheme which is proper over Spec(A). Then for any integers j ≥ 0 and n ∈ Z, the natural map

{Hn
Zar(X,L

j
−/A)/I

r}r −→ {Hn
Zar(X,L

j
−/A ⊗

L
OX
OX/I

rOX)}r

is an isomorphism of pro A-modules.

Proof. By Lemma 3.4 and its proof, all the terms in the hypercohomology spectral sequence

Ep,q
2 = Hp

Zar(X,H
q
Zar(−,L

j
−/R)) =⇒ Hp+q

Zar (X,L
j
−/A)

are finitely generated A-modules. The functor {− ⊗A A/Ir}r is exact on the category of finitely
generated A-modules ([Mor16, Theorem 1.1 (ii)]), so it induces a spectral sequence of pro A-modules

Ep,q
2 = {Hp

Zar(X,H
q
Zar(−,L

j
−/A))/I

r}r =⇒ {Hp+q
Zar (X,L

j
−/A)/I

r}r.

It then suffices to prove that the natural map of pro A-modules

{Hp
Zar(X,H

q
Zar(−,L

j
−/A))/I

r}r −→ {Hp
Zar(X,H

q
Zar(−,L

j
−/A ⊗

L
OX
OX/I

rOX))}r

is an isomorphism for all integers p, q ≥ 0. The natural map

{Hp
Zar(X,H

q
Zar(−,L

j
−/A))/I

r}r −→ {Hp
Zar(X,H

q
Zar(−,L

j
−/A)⊗

L
A A/I

r)}r

is an isomorphism by Lemma 3.3 applied to the coherent sheaf Hq
Zar(−,L−/A) on X, and the natural

map

{Hp
Zar(X,H

q
Zar(−,L

j
−/A)⊗

L
A A/I

r)}r −→ {Hp
Zar(X,H

q
Zar(−,L

j
−/A ⊗

L
OX
OX/I

rOX))}r

is an isomorphism by [Mor16, Lemma 2.3].

Lemma 3.6. Let A be a noetherian commutative ring, I be an ideal of A, and X be a proper scheme
over Spec(A) such that the induced map X \ V (IOX)→ Spec(A) \ V (I) is an isomorphism.

(1) For any integers j ≥ 0 and n ∈ Z, the natural map

{Hn
Zar(X,L

j
−/A ⊗

L
OX

IrOX)}r −→ {IrHn
Zar(X,L

j
−/A)}r

is an isomorphism of pro A-modules.

(2) For any integers j ≥ 0 and n ∈ Z such that (j, n) ̸= (0, 0), the A-module Hn
Zar(X,L

j
−/A) is killed

by a power of I; in particular, the pro A-module {IrHn
Zar(X,L

j
−/A)}r is zero.

Proof. (1) The short exact sequence 0 → {IrOX}r → OX → {OX/I
rOX}r → 0 of pro OX -modules

induces a long exact sequence

· · · → Hn
Zar(X,L

j
−/A ⊗

L
OX

IrOX)}r → Hn
Zar(X,L

j
−/A)→ {H

n
Zar(X,L

j
−/A ⊗

L
OX
OX/I

rOX)}r → · · ·

of pro A-modules. By Corollary 3.5, the boundary maps of this long exact sequence vanish, hence the
natural map

{Hn
Zar(X,L

j
−/A ⊗

L
OX

IrOX)}r −→ {IrHn
Zar(X,L

j
−/A)}r

is an isomorphism of pro A-modules.
(2) By Lemma 3.4, the A-module Hn

Zar(X,L
j
−/A) is finitely generated. Because the map

X \ V (IOX)→ Spec(A) \ V (I)

is an isomorphism, this A-module is moreover supported on V (I) if (j, n) ̸= (0, 0). If (j, n) ̸= (0, 0),
this implies that the A-module Hn

Zar(X,L
j
−/A) is killed by a power of I.
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Corollary 3.7. Let A be a noetherian commutative ring, I be an ideal of A, and X be a proper scheme
over Spec(A) such that the induced map X \ V (IOX)→ Spec(A) \ V (I) is an isomorphism. Then for
every integer j ≥ 0, the natural map

{Lj
A/Z ⊗

L
A I

r}r −→ {RΓZar(X,Lj
−/Z ⊗

L
OX

IrOX)}r

is a weak equivalence of pro objects in the derived category D(A).

Proof. By Lemma 3.6, and for any integers n, a, b ∈ Z, the pro A-module

{Hn(Lj
A/Z ⊗

L
A Ha

Zar(X,Lb
−/A ⊗

L
OX

IrOX))}r

is zero, except if (a, b) = (0, 0). By transitivity for the powers of the cotangent complex (see the proof
of [Mor16, Lemma 2.8 (ii)] for more details), this implies that the natural map

{Hn(Lj
A/Z ⊗

L
A H0

Zar(X, I
rOX))}r −→ {Hn

Zar(X,L
j
−/Z ⊗

L
OX

IrOX)}r

is an isomorphism of pro A-modules. Let B be the A-algebra H0
Zar(X,OX). Applying Lemma 3.6 (1)

for j = n = 0, it then suffices to prove that the natural map {Ir}r → {IrB}r is an isomorphism of
pro A-modules. The A-algebra B is finite and isomorphic to A away from the vanishing locus of I, so
the kernel and cokernel of the structure map A → B are killed by a power of I. The result is then a
formal consequence of [Mor16, Theorem 1.1 (ii)].

Lemma 3.8. Let Y → X be a closed immersion of noetherian schemes, and I be the associated ideal
sheaf on X. Then for every integer j ≥ 0, the natural map

{RΓZar(X,Lj
−/Z ⊗

L
OX
OX/Ir)}r −→ {RΓZar(rY,Lj

−/Z)}r

is a weak equivalence of pro objects in the derived category D(A).

Proof. The scheme X is noetherian, hence quasi-separated, so we may assume by induction that X is
affine. In this case, the result is [Mor18, Corollary 4.5 (ii)].

Proposition 3.9. Let j ≥ 0 be an integer. Then for every abstract blowup square of noetherian
schemes (3.1.1), the natural commutative diagram

RΓZar(X,Lj
−/Z) RΓZar(X

′,Lj
−/Z)

{RΓZar(rY,Lj
−/Z)}r {RΓZar(rY

′,Lj
−/Z)}r

is a weakly cartesian square of pro objects in the derived category D(Z). In particular, the presheaf
RΓZar(−,Lj

−/Z) is a pro cdh sheaf on noetherian schemes.

Proof. The scheme X is noetherian, hence quasi-separated, so we may assume by induction that X is
affine, given by the spectrum of a noetherian commutative ring A. Let I be the ideal of A defining the
closed subscheme Y of Spec(A). By Lemma 3.8, the desired statement is equivalent to the fact that
the commutative diagram

Lj
A/Z RΓZar(X

′,Lj
−/Z)

{Lj
A/Z ⊗

L
A A/I

r}r {RΓZar(X
′,Lj

−/Z ⊗
L
OX′ OX′/IrOX′)}r

is a weakly cartesian square of pro objects in the derived category D(Z). Taking fibres along the
vertical maps, this is exactly Corollary 3.7.
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We now use Proposition 3.9 to prove pro cdh descent for variants of the cotangent complex (Corol-
lary 3.12). In the following two lemmas, we consider inverse systems of objects in the derived cate-
gory D(Z). We say that an inverse system (Cr)r in the derived category D(Z) is essentially zero if for
every index r and every integer n ∈ Z, there exists an index r′ ≥ r such that the map Hn(Cr′)→ Hn(Cr)
is the zero map. In particular, an inverse system (Cr)r in the derived category D(Z) is essentially zero
if and only if the associated pro object {Cr}r in the derived category D(Z) is weakly zero.

Lemma 3.10. Let (Cr)r be an inverse system in the derived category D(Z). If (Cr)r is essentially
zero, then

(∏
p∈P Cr/p

)
r

is essentially zero.

Proof. Assume that the inverse system (Cr)r is essentially zero. Let r0 be an index of this inverse
system, n ∈ Z be an integer, and p be a prime number. We will use repeatedly that for every index r,
there is a natural short exact sequence

0 −→ Hn(Cr)/p −→ Hn(Cr/p) −→ Hn+1(Cr)[p] −→ 0

of abelian groups. Let r1 ≥ r0 be an index such that the map Hn(Cr1) → Hn(Cr0) is the zero
map. Then for every index r ≥ r1, the map Hn(Cr)/p → Hn(Cr0)/p is the zero map, and the map
Hn(Cr/p) → Hn(Cr0/p) thus factors through the map Hn(Cr/p) → Hn+1(Cr)[p]. Let r2 ≥ r1 be an
index such that the map Hn+1(Cr2)→ Hn+1(Cr1) is the zero map. Then the map

Hn+1(Cr2)[p]→ Hn+1(Cr1)[p]

is the zero map. By construction, the map

Hn(Cr2/p) −→ Hn(Cr0/p)

factors as
Hn(Cr2/p) −→ Hn+1(Cr2)[p]

0−−→ Hn+1(Cr1)[p] −→ Hn(Cr0/p),

and is thus also the zero map. The index r2 does not depend on the prime number p, so the map∏
p∈P

Hn(Cr2/p) −→
∏
p∈P

Hn(Cr0/p)

is the zero map, and the inverse system
(∏

p∈P Cr/p
)
r

is essentially zero.

Lemma 3.11. Let (Cr)r be an inverse system in the derived category D(Z). If (Cr)r is essentially
zero, then

(∏
p∈P(Cr)

∧
p

)
r

is essentially zero.

Proof. Assume that the inverse system (Cr)r is essentially zero. Let r0 be an index of this inverse
system, n ∈ Z be an integer, and p be a prime number. We will use repeatedly that for every index
r ≥ 0, there is a short exact sequence

0 −→ Ext1Zp
(Qp /Zp,Hn(Cr)) −→ Hn((Cr)

∧
p ) −→ HomZp

(Qp /Zp,Hn+1(Cr)) −→ 0

of abelian groups. Let r1 ≥ r0 be an index such that the map Hn(Cr1) → Hn(Cr0) is the zero map.
Then for every index r ≥ r1, the map Ext1Zp

(Qp /Zp,Hn(Cr)) → Ext1Zp
(Qp /Zp,Hn(Cr0)) is the zero

map, and the map Hn((Cr)
∧
p )→ Hn((Cr0)

∧
p ) thus factors through the map

Hn((Cr)
∧
p ) −→ HomZp

(Qp /Zp,Hn+1(Cr)).

Let r2 ≥ r1 be an index such that the map Hn+1(Cr2) → Hn+1(Cr1) is the zero map. Then the map
HomZp

(Qp /Zp,Hn+1(Cr2))→ HomZp
(Qp /Zp,Hn+1(Cr1)) is the zero map. By construction, the map

Hn((Cr2)
∧
p ) −→ Hn((Cr0)

∧
p )

factors as

Hn((Cr2)
∧
p ) −→ HomZp

(Qp /Zp,Hn+1(Cr2))
0−−→ HomZp

(Qp /Zp,Hn+1(Cr1)) −→ Hn((Cr0)
∧
p ),

16
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and is thus the zero map. The index r2 does not depend on the prime number p, so the map∏
p∈P

Hn((Cr2)
∧
p ) −→

∏
p∈P

Hn((Cr0)
∧
p )

is the zero map, and the inverse system
(∏

p∈P(Cr)
∧
p

)
r

is essentially zero.

Corollary 3.12. Let j ≥ 0 be an integer, and let F be one of the presheaves

RΓZar
(
−,Lj

−/Z
)
, RΓZar

(
−,

∏
p∈P

Lj
−Fp/ Fp

)
, RΓZar

(
−,

∏
p∈P

(Lj
−/Z)

∧
p

)
, and RΓZar

(
−,Lj

−Q/Q
)
,

where −Fp is the derived base change from Z to Fp. Then the presheaf F is a pro cdh sheaf on noetherian
schemes.

Proof. The presheaf F is a Nisnevich sheaf, so the result is equivalent to proving that F sends an
abstract blowup square of noetherian schemes to a weakly cartesian square of pro objects in the
derived category D(Z). For RΓZar

(
−,Lj

−/Z
)
, this is Proposition 3.9. For RΓZar

(
−,

∏
p∈P L

j
−Fp/ Fp

)
,

this is a formal consequence of Proposition 3.9 and Lemma 3.10. For RΓZar
(
−,

∏
p∈P(L

j
−/Z)

∧
p

)
, this is

similarly a formal consequence of Proposition 3.9 and Lemma 3.11. And for RΓZar
(
−,Lj

−Q/Q
)
, this is

a consequence of Proposition 3.9 and the fact that the rationalisation of a zero pro system of abelian
groups is zero.

3.2 Pro cdh descent for motivic cohomology
In this subsection, we prove pro cdh descent for the motivic complexes Z(i)mot (Theorem 3.23).

We use the fracture square [Bou24, Corollary 4.31] to decompose the proof into several steps, which
ultimately all rely on Corollary 3.12. We start with the following rational results.

Proposition 3.13 ([EM23]). For every integer i ≥ 0, the presheaf RΓZar
(
−, L̂Ω

≥i

−Q/Q
)

is a pro cdh
sheaf on noetherian schemes.

Proof. This is a part of [EM23, proof of Theorem 8.2]. More precisely, one uses [Bou24, Proposi-
tion 4.41] to reduce the proof to a finite number of powers of the cotangent complex relative to Q,
where this is Corollary 3.12.

The following result is a rigid-analytic variant of Proposition 3.13, where the relevant objects are
defined in [Bou24, Section 4.2].

Proposition 3.14. For every integer i ≥ 0, the presheaf RΓZar
(
−,

∏′
p∈P L̂Ω

≥i

−Qp/Qp

)
is a pro cdh sheaf

on noetherian schemes.

Proof. By [Bou24, Remark 4.27], there is a fibre sequence of presheaves

RΓZar

(
−,

∏
p∈P

′
L̂Ω

≥i

−Qp/Qp

)
−→ RΓZar

(
−,

∏
p∈P

′
L̂Ω−Qp/Qp

)
−→ RΓZar

(
−,

(∏
p∈P

(
LΩ<i

−/Z
)∧
p

)
Q

)
on qcqs derived schemes, and in particular on noetherian schemes. By [Bou24, Corollary 4.42], the
presheaf RΓZar

(
−,

∏′
p∈P L̂Ω−Qp/Qp

)
is a cdh sheaf on noetherian schemes, so it is a pro cdh sheaf on

noetherian schemes. The presheaf RΓZar
(
−,

(∏
p∈P

(
LΩ<i

−/Z
)∧
p

)
Q

)
has a finite filtration with graded

pieces given by the presheaves RΓZar
(
−,

(∏
p∈P

(
Lj
−/Z

)∧
p

)
Q

)
(0 ≤ j < i). These presheaves are pro

cdh sheaves on noetherian schemes by Corollary 3.12, so the presheaf RΓZar
(
−,

(∏
p∈P

(
LΩ<i

−/Z
)∧
p

)
Q

)
is a pro cdh sheaf on noetherian schemes. This implies that the presheaf RΓZar

(
−,

∏′
p∈P L̂Ω

≥i

−Qp/Qp

)
is a pro cdh sheaf on noetherian schemes.
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Proposition 3.15. For every integer i ≥ 0, the presheaf Q(i)mot is a pro cdh sheaf on noetherian
schemes.

Proof. By [Bou24, Corollary 4.67], there is a fibre sequence of presheaves

Q(i)mot(−) −→ Q(i)cdh(−) −→ cofib
(
RΓZar

(
−,LΩ<i

−Q/Q
)
−→ RΓcdh

(
−,Ω<i

−Q/Q
))

[−1]

on qcqs derived schemes, and in particular on noetherian schemes. Cdh sheaves are in particular
pro cdh sheaves, so it suffices to prove that the presheaf RΓZar

(
X,LΩ<i

−Q/Q
)

is a pro cdh sheaf on
noetherian schemes. This presheaf has a finite filtration with graded pieces given by the presheaves
RΓZar

(
−,Lj

−Q/Q
)

(0 ≤ j < i), so the result is a consequence of Corollary 3.12.
Alternatively, one can prove this result by using [Bou24, Corollary 4.60] and pro cdh descent for

algebraic K-theory ([KST18, Theorem A]).

Corollary 3.16. For every integer i ≥ 0, the presheaf Q(i)TC is a pro cdh sheaf on noetherian schemes.

Proof. By [Bou24, Remark 3.21], the presheaf Q(i)TC is a pro cdh sheaf on noetherian schemes if and
only if the presheaf Q(i)mot is a pro cdh sheaf on noetherian schemes. The result is then a consequence
of Proposition 3.15.

By [Bou24, Remark 3.21], the presheaf Q(i)TC is a pro cdh sheaf on noetherian schemes if and only
if the presheaf Q(i)mot is a pro cdh sheaf on noetherian schemes. One can then prove Proposition 3.15
alternatively by using the Adams decomposition ([Bou24, Corollary 4.60]) and pro cdh descent for
algebraic K-theory ([KST18, Theorem A]).

We now turn our attention to Bhatt–Morrow–Scholze’s syntomic complexes Zp(i)
BMS.

Corollary 3.17. For every integer i ≥ 0, the presheaf
(∏

p∈P Zp(i)
BMS

)
Q is a pro cdh sheaf on

noetherian schemes.

Proof. Rationalising the cartesian square of [Bou24, Corollary 4.31] yields a cartesian square of presheaves

Q(i)TC(−) RΓZar

(
−, L̂Ω

≥i

−Q/Q

)

(∏
p∈P Zp(i)

BMS(−)
)
Q RΓZar

(
−,

∏′
p∈P L̂Ω

≥i

−Qp/Qp

)
on qcqs derived schemes, and in particular on noetherian schemes. The other three presheaves of this
cartesian square being pro cdh sheaves on noetherian schemes (Propositions 3.13, 3.14, and 3.15), the
bottom left presheaf is also a pro cdh sheaf on noetherian schemes.

Lemma 3.18. Let p be a prime number. Then for every integer i ≥ 0, the presheaf Fp(i)
BMS is a pro

cdh sheaf on noetherian schemes.

Proof. By [AMMN22, Corollary 5.31], there exists an integer m ≥ 0 and an equivalence of presheaves3

Fp(i)
BMS(−) ∼−−→ fib

(
can− ϕi : (N≥i∆−{i}/N≥i+m∆−{i})/p −→ (∆−{i}/N≥i+m∆−{i})/p

)
.

In particular, it suffices to prove that for every integer j ≥ 0, the presheaf N j∆−/p is a pro cdh
sheaf on noetherian schemes. By [BL22, Remark 5.5.8 and Example 4.7.8], there is a fibre sequence of
presheaves

N j∆−{i}/p −→ Filconj
j ∆−/ZpJp̃K/p

Θ+j−−−→ Filconj
j−1∆−/ZpJp̃K/p.

The presheaves Filconj
j ∆−/ZpJp̃K/p and Filconj

j−1∆−/ZpJp̃K/p have finite filtrations with graded pieces given
by modulo p powers of the cotangent complex. The result is then a consequence of Corollary 3.12.

3Prismatic cohomology was first defined on p-complete p-quasisyntomic rings ([BMS19, BS22]), and then generalised
to arbitrary animated commutative rings by taking the left Kan extension from polynomial Z-algebras, and imposing
that it depends only on the derived p-completion of its input ([AMMN22, BL22]). On noetherian rings R, the derived
and classical p-completions agree, so the prismatic cohomology of R is naturally identified with the prismatic cohomology
of the classical p-completion of R.
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Lemma 3.19. Let A be an abelian group of the form A =
∏

p∈PAp, where Ap is a derived p-complete
abelian group. If A is torsion, then A is bounded torsion (i.e., there exists an integer N ≥ 1 such that
A is N -torsion).

Proof. Assume that the abelian group A is torsion. Then for every prime number p, the abelian group
Ap is torsion and derived p-complete, hence it is bounded p-power torsion by [Bha19, Theorem 1.1],
in the sense that there exists an integer n ≥ 1 such that Ap[p

m] = Ap[p
n] for all m ≥ n. Let S be the

set of prime numbers p such that Ap is not the zero group. Then there exists an inclusion of abelian
groups

∏
p∈S Fp ⊆ A, and, if S is infinite, then

∏
p∈S Fp is not torsion. So S is finite, and, as a finite

product of bounded torsion abelian groups, the abelian group A is bounded torsion.

Proposition 3.20. For every integer i ≥ 0, the presheaf
∏

p∈P Zp(i)
BMS is a pro cdh sheaf on noethe-

rian schemes.

Proof. Fix an abstract blowup square of noetherian schemes (3.1.1). Let {Cr}r be the pro object in
the derived category D(Z) defined as the total fibre of the commutative square obtained by applying
the presheaf

∏
p∈P Zp(i)

BMS to this abstract blowup square. We want to prove that {Cr}r is weakly
zero. By Corollary 3.17, its rationalisation {Cr ⊗Z Q}r is weakly zero.

Let r0 ≥ 0 and n ∈ Z be integers. Let r1 ≥ r0 be an integer such that the map

Hn(Cr1)⊗Z Q −→ Hn(Cr0)⊗Z Q

is the zero map. We now construct an integer r2 ≥ r1 such that the map

Hn(Cr2) −→ Hn(Cr0)

is the zero map. By Lemma 3.18, and for every prime number p, the pro abelian group {Hn(Cr/p)}r
is zero, which implies that the pro abelian group {Hn(Cr)/p}r is zero. By induction, this implies that
for every integer N ≥ 1, the pro abelian group {Hn(Cr)/N}r is zero. By construction, the cohomology
groups Hn(Cr) (r ≥ 0) are naturally products, indexed by prime numbers p, of derived p-complete
abelian groups. The kernel and cokernel of a map of derived p-complete abelian groups are derived
p-complete abelian groups. So the image Ar0 of the map Hn(Cr1) → Hn(Cr0) is a product, indexed
by prime numbers p, of derived p-complete abelian groups. This abelian group Ar0 is also torsion by
definition of the integer r1, so Lemma 3.19 implies that there exists an integer N ≥ 1 such that Ar0 is
N -torsion. Let r2 ≥ r1 be an integer such that the map Hn(Cr2)/N → Hn(Cr1)/N is the zero map.
Then the map

Hn(Cr2) −→ Hn(Cr0)

factors as
Hn(Cr2) −→ Hn(Cr2)/N

0−−→ Hn(Cr1)/N −→ Ar0 ⊆ Hn(Cr0),

and is thus the zero map, which concludes the proof.

Corollary 3.21. Let p be a prime number. Then for every integer i ≥ 0, the presheaf Zp(i)
BMS is a

pro cdh sheaf on noetherian schemes.

Proof. The presheaf Zp(i)
BMS is a direct summand of the presheaf

∏
ℓ∈P Zℓ(i)

BMS, so the result is a
consequence of Proposition 3.20.

Proposition 3.22. For every integer i ≥ 0, the presheaf Z(i)TC is a pro cdh sheaf on noetherian
schemes.

Proof. By [Bou24, Corollary 4.31], there is a cartesian square of presheaves

Z(i)TC RΓZar
(
−, L̂Ω

≥i

−Q/Q
)

∏
p∈P Zp(i)

BMS RΓZar(−,
∏′

p∈P L̂Ω
≥i

−Qp/Qp

)
19
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on qcqs derived schemes, and in particular on noetherian schemes. The presheaves

RΓZar
(
−, L̂Ω

≥i

−Q/Q
)
, RΓZar

(
−,

∏
p∈P

′
L̂Ω

≥i

−Qp/Qp

)
, and

∏
p∈P

Zp(i)
BMS

are pro cdh sheaves on noetherian schemes by Propositions 3.13, 3.14, and 3.20 respectively. So the
presheaf Z(i)TC is a pro cdh sheaf on noetherian schemes.

The following result was proved on noetherian schemes over a field by Elmanto–Morrow [EM23].

Theorem 3.23 (Pro cdh descent). For every integer i ≥ 0, the motivic complex Z(i)mot is a pro cdh
sheaf on noetherian schemes.

Proof. By [Bou24, Remark 3.21], there is a cartesian square of presheaves

Z(i)mot Z(i)TC

Z(i)cdh Lcdh Z(i)TC

on qcqs schemes, and in particular on noetherian schemes. The presheaf Z(i)TC is a pro cdh sheaf on
noetherian schemes by Proposition 3.22. The presheaves Z(i)cdh and Lcdh Z(i)TC are cdh sheaves on
noetherian schemes by construction, hence pro cdh sheaves on noetherian schemes. So the presheaf
Z(i)mot is a pro cdh sheaf.

Remark 3.24 (Pro cdh descent for algebraic K-theory). The arguments to prove Theorem 3.23 can
be adapted to give a new proof of the pro cdh descent for algebraic K-theory of Kerz–Strunk–Tamme
[KST18]. More precisely, by [Bou24, Theorem 1.1], pro cdh descent for algebraic K-theory is equivalent
to pro cdh descent for TC. By [Bou24, Corollary 4.63], the result rationally reduces to the pro cdh
descent for HC, which is proved by Morrow ([Mor16, Theorem 0.2]). The result mod p is similar to
that of Lemma 3.18, where the Nygaard filtration and the relative prismatic cohomology are replaced
by the Tate filtration and by relative THH; the pro cdh descent for relative THH then reduces to the
pro cdh descent for powers of the cotangent complex by [AMMN22, Section 5.2]. Following [Bou24,
Section 4.2], there is a natural cartesian square

TC(−) HC−(−Q/Q)

∏
p∈P TC(−;Zp)

(∏′
p∈P HH(−;Qp)

)hS1

.

Using the cdh descent for the presheaves HP(−Q/Q) ([LT19]) and
(∏′

p∈P HH(−;Qp)
)tS1

([Bou24,
Corollary 4.42]), the pro cdh descent of the two right terms reduces to the pro cdh descent for HC.
The integral statement is then similarly a consequence of Lemma 3.19.

3.3 Motivic Weibel vanishing
In this subsection, we prove Theorem 3.27, which is a motivic refinement of Weibel’s vanishing

conjecture on negative K-groups ([KST18, Theorem B (i)]).

Lemma 3.25. Let V be a henselian valuation ring. Then for every integer i ≥ 0, the motivic complex
Z(i)mot(V ) ∈ D(Z) is in degrees at most i.

Proof. Henselian valuation rings are local rings for the cdh topology, so the natural maps

Z(i)mot(V ) −→ Z(i)cdh(V )←− Z(i)lisse(V )

are equivalences in the derived category D(Z) ([Bou24, Remark 3.24 and Definition 3.10]).
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Lemma 3.26. Let A be a local ring, and I be a nil ideal of A. Then for every integer i ≥ 0, the fibre
of the natural map

Z(i)mot(A) −→ Z(i)mot(A/I)

is in degrees at most i.

Proof. We first prove the result rationally, and modulo p for every prime number p. Any finitary cdh
sheaf is invariant under nil extensions. By [Bou24, Corollary 4.67], the result after rationalisation is
thus equivalent to the fact that the fibre of the natural map

LΩ<i
(AQ)/Q[−1] −→ LΩ<i

((A/I)Q)/Q[−1]

is in degrees at most i. Both terms of this map are in degrees at most i. In degree i, this map is given
by the natural map

Ωi−1
(AQ)/Q −→ Ωi−1

((A/I)Q)/Q,

which is surjective as the Q-algebra (A/I)Q is a quotient of the Q-algebra AQ. Let p be a prime
number. By [Bou24, Corollary 3.26], the result modulo p is equivalent to the fact that the fibre of the
natural map

Fp(i)
BMS(A) −→ Fp(i)

BMS(A/I)

is in degrees at most i. The pair (A, I) is henselian, so this is a consequence of [Bou24, Theorem 2.27].
By the previous rational statement, the fibre F ∈ D(Z) of the natural map

Z(i)mot(A) −→ Z(i)mot(A/I)

has torsion cohomology groups in degrees at least i+1. By the short exact sequence of abelian groups

0 −→ Hj(F )/p −→ Hj(F/p) −→ Hj+1(F )[p] −→ 0

for every prime number p and every integer j ≥ i + 1, the previous torsion statement implies that
these cohomology groups are also torsionfree, hence zero, in degrees at least i + 2. It then re-
mains to prove that the abelian group Hi+1(F ) is zero. By Corollary 2.10 and its proof, the abelian
group Hi+1

mot(A,Z(i)) is torsionfree, so it suffices to prove that the natural map of abelian groups
Hi

mot(A,Z(i)) → Hi
mot(A/I,Z(i)) is surjective. Let P be a local ind-smooth Z-algebra with a sur-

jective map P → A. By Theorem 2.11 (see also Lemma 2.19 for a related argument), and because
P → A/I is also a surjection from a local ind-smooth Z-algebra, the composite map of abelian groups

Hi
mot(P,Z(i)) −→ Hi

mot(A,Z(i)) −→ Hi
mot(A/I,Z(i))

is surjective, so the right map is surjective, as desired.

Theorem 3.27 (Motivic Weibel vanishing). Let d ≥ 0 be an integer, and X be a noetherian scheme
of dimension at most d. Then for every integer i ≥ 0, the motivic complex Z(i)mot(X) ∈ D(Z) is in
degrees at most i+ d.

Proof. The presheaf Z(i)mot : Schqcqs,op → D(Z) satisfies the following properties:

(1) it is finitary ([Bou24, Corollary 4.59]);

(2) it satisfies pro cdh descent on noetherian schemes (Theorem 3.23);

(3) for every henselian valuation ring V , the complex Z(i)mot(V ) is in degrees at most i (Lemma 3.25);

(4) for every noetherian local ring A and every nilpotent ideal I of A, the fibre of the natural map
Z(i)mot(A)→ Z(i)mot(A/I) is in degrees at most i (Lemma 3.26).
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By [Bou24, Definition 3.12 and Lemma 4.57], the presheaf Z(i)cdh : Schqcqs,op → D(Z) is a finitary
cdh sheaf which is in degrees at most i on henselian valuation rings, hence it also satisfies the previous
properties.

By [EM23, Proposition 8.10] applied to the presheaf fib
(
Z(i)mot → Z(i)cdh

)
[i], this implies that

for every noetherian scheme X of dimension at most d, the complex

fib
(
Z(i)mot(X) −→ Z(i)cdh(X)

)
is in degrees at most i+d. The complex Z(i)cdh(X) is also in degrees at most i+d ([BEM, Theorem 7.12],
see also [Bou24, Theorem 3.13 (1)]), so the complex Z(i)mot(X) is in degrees at most i+ d.

Remark 3.28 (Relation to Weibel’s K-theoretic vanishing conjecture). Let X be a noetherian scheme
of dimension at most d. Theorem 3.27 states that the Atiyah–Hirzebruch spectral sequence

Ei,j
2 = Hi−j

mot(X,Z(−j)) =⇒ K−i−j(X)

is supported in the left half plane x ≤ d: see the following representation of the E2 page, where Hj(i)
denotes the motivic cohomology group Hj

mot(X,Z(i)).

· · · 0 0 0 0 · · · 0 0 0 0

· · · 0 0 H0(0) H1(0) · · · Hd−2(0) Hd−1(0) Hd(0) 0

· · · 0 H0(1) H1(1) H2(1) · · · Hd−1(1) Hd(1) Hd+1(1) 0

· · · H0(2) H1(2) H2(2) H3(2) · · · Hd(2) Hd+1(2) Hd+2(2) 0

...
...

...
...

...
...

...
...

...

In particular, the negative K-groups K−i−j(X) vanish for −i− j < −d (this is Weibel’s vanishing
conjecture on algebraic K-theory), and there is a natural edge map isomorphism

K−d(X) ∼= Hd
mot(X,Z(0))

of abelian groups. Using the description of weight zero motivic cohomology ([Bou24, Example 4.68]),
the latter result recovers the known description of K−d(X) ([KST18, Corollary D]). Note that Theo-
rem 3.27 is however not a new proof of these results of Kerz–Strunk–Tamme, as our Atiyah–Hirzebruch
spectral sequence relating motivic cohomology and algebraic K-theory relies on [Bou24, Theorem 1.1],
which itself relies on the results in [KST18].

Remark 3.29. Let X be a noetherian scheme of dimension at most d. Then for every integer i ≥ 0,
the proof of Theorem 3.27 also implies that the natural map

Z(i)mot(X) −→ Z(i)cdh(X)

is surjective on Hi+d. For i = 0, this map is even an isomorphism on Hd (actually on all cohomol-
ogy groups, by [Bou24, Example 4.68]), thus recovering Weibel’s conjecture that the natural map
K−d(X)→ KH−d(X) is an isomorphism [Wei80, KST18].

The following result is a description of the group K−d+1, similar to the description of the group
K−d predicted by Weibel (Remark 3.28).

Corollary 3.30. Let d ≥ 0 be an integer, and X be a noetherian scheme of dimension at most d.
Then there is a natural exact sequence

Hd−2
cdh (X,Z) δ−−→ Hd+1

mot(X,Z(1)) −→ K−d+1(X) −→ Hd−1
cdh (X,Z) −→ 0

of abelian groups, where δ is the differential map coming from the E2-page of the Atiyah–Hirzebruch
spectral sequence ([Bou24, Corollary 4.55]). Moreover, for every integer m ≥ 2, if m is invertible in X,
then the image of the map (m− 1)δ is m-power torsion.
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Proof. The motivic complex Z(i)mot(X) is zero for i < 0 ([Bou24, Corollary 4.47]), and is naturally
identified with the complex RΓcdh(X,Z) for i = 0 ([Bou24, Example 4.68]). The first statement
is then a consequence of the Atiyah–Hirzebruch spectral sequence ([Bou24, Corollary 4.55]) and of
motivic Weibel’s vanishing (Theorem 3.27). The second statement is a consequence of the compatibility
of the map δ with the Adams operation ψm ([Bou24, Construction 4.9]). More precisely, [Bou24,
Corollary 4.10] implies that the induced map

δ : Hd−2
cdh (X,Z)[ 1m ] −→ Hd+1

mot(X,Z(1))[ 1m ]

satisfies the equation δ = mδ, i.e., (m− 1)δ = 0, which implies the desired result.

3.4 Comparison to pro cdh motivic cohomology
In this subsection, we compare the motivic complexes Z(i)mot to Kelly–Saito’s pro cdh motivic

complexes Z(i)procdh (Theorem 3.32). In equicharacteristic, this is [KS24, Corollary 1.11] (see also
[EM23, Theorem 1.15]). Our proof is structurally the same, although finitariness and pro cdh descent
in mixed characteristic rely on the main results of [Bou24, Section 4], and our proof of the comparison
to lisse motivic cohomology is different in mixed characteristic (see comment before Corollary 2.12).

Lemma 3.31. Let R be a nil extension of a henselian valuation ring, i.e., a commutative ring R whose
quotient R/I by its ideal of nilpotent elements I is a henselian valuation ring. Then for every integer
i ≥ 0, the lisse-motivic comparison map

Z(i)lisse(R) −→ Z(i)mot(R)

is an equivalence in the derived category D(Z).

Proof. By Corollary 2.12, it suffices to prove that the complex Z(i)mot(R) ∈ D(Z) is in degrees at
most i. Let I be the ideal of nilpotent elements of the commutative ring R. Using the natural fibre
sequence

fib
(
Z(i)mot(R) −→ Z(i)mot(R/I)

)
−→ Z(i)mot(R) −→ Z(i)mot(R/I)

in the derived category D(Z), the result is then a consequence of Lemmas 3.25 and 3.26.

Theorem 3.32 (Comparison to pro cdh motivic cohomology). Let X be a noetherian scheme. Then
for every integer i ≥ 0, the lisse-motivic comparison map induces a natural equivalence

Z(i)procdh(X)
∼−−→ Z(i)mot(X)

in the derived category D(Z).

Proof. The presheaf Z(i)mot : Schqcqs,op → D(Z) satisfies the following properties:

(1) it is finitary ([Bou24, Corollary 4.59]);

(2) it satisfies pro cdh descent on noetherian schemes (Theorem 3.23);

(3) for every pro cdh local ring R, the lisse-motivic comparison map

Z(i)lisse(R) −→ Z(i)mot(R)

is an equivalence in the derived category D(Z) (Lemma 3.31 and [KS24, Proposition 1.7]).

By [KS24, Theorem 9.7],4 this implies that for every noetherian schemeX, the lisse-motivic comparison
map induces a natural equivalence

Z(i)procdh(X)
∼−−→ Z(i)mot(X)

in the derived category D(Z).
4This theorem is stated for schemes over a field, but the proof works over any noetherian commutative ring.
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4 The projective bundle formula
In this section, we prove that the motivic complexes Z(i)mot satisfy the projective bundle formula

(Theorem 4.19) and regular blowup excision (Theorem 4.18). This implies in particular that the
presheaves Z(i)mot fit within the recent theory of non-A1-invariant motives of Annala–Iwasa [AI23]
and Annala–Hoyois–Iwasa [AHI23, AHI24].

4.1 First Chern classes
In this subsection, we construct the motivic first Chern class (Definition 4.1) in order to formulate

the projective bundle formula (Theorem 4.19).

Definition 4.1 (Motivic first Chern class). Let X be a qcqs derived scheme. The motivic first Chern
class is the natural map

cmot
1 : RΓNis(X,Gm)[−1] −→ Z(1)mot(X),

in the derived category D(Z), defined as the Nisnevich sheafification of the natural map of presheaves(
τ≤1RΓZar(−,Gm)

)
[−1] −→ Z(1)mot(−)

induced by Definition 2.1 and [Bou24, Example 3.9]. We also denote by

cmot
1 : Pic(X) −→ H2

mot(X,Z(1))

the map induced on H2 (Example 2.15).

Remark 4.2. The motivic first Chern class of Definition 4.1 is uniquely determined by its naturality,
and the fact that it is given by the map of [Bou24, Definition 3.23] on smooth Z-schemes.

For every qcqs scheme X, the line bundle O(1) ∈ Pic(P1
X), via the multiplicative structure of the

motivic complexes Z(i)mot, induces, for every integer i ∈ Z, a natural map

cmot
1 (O(1)) : Z(i− 1)mot(P1

X)[−2] −→ Z(i)mot(P1
X)

in the derived category D(Z). If π : P1
X → X is the canonical projection map, this in turn induces a

natural map

π∗ ⊕ cmot
1 (O(1))π∗ : Z(i)mot(X)⊕ Z(i− 1)mot(X)[−2] −→ Z(i)mot(P1

X) (4.2.1)

in the derived category D(Z). The aim of the following section is to prove that this map is an
equivalence (Theorem 4.7). To prove such an equivalence, we will need compatibilities with other first
Chern classes.

Construction 4.3 (P1-bundle formula for additive invariants). Following [EM23, Section 5.1], every
additive invariant E of Z-linear ∞-categories in the sense of [HSS17, Definition 5.11] admits a natural
first Chern class, inducing a natural map of spectra

π∗ ⊕ (1− c1)(O(−1))π∗ : E(X)⊕ E(X) −→ E(P1
X).

For every additive invariant of Z-linear∞-categories, this map is an equivalence ([EM23, Lemma 5.6]).

Remark 4.4 (Compatibility with filtrations). If the additive invariant E of Z-linear ∞-categories,
seen as a presheaf of spectra on qcqs schemes, admits a multiplicative filtered refinement Fil⋆E which is
a multiplicative filtered module over the lisse motivic filtration Fil⋆lisseK

conn ([Bou24, Definition 3.7]),5
then this map has a natural filtered refinement

π∗ ⊕ (1− c1)(O(−1))π∗ : Fil⋆E(X)⊕ Fil⋆−1E(X) −→ Fil⋆E(P1
X)

by [EM23, Construction 5.11 and Lemma 5.12]. If E is algebraic K-theory, equipped with the motivic
filtration Fil⋆motK ([Bou24, Definition 3.19]), the argument of [EM23, Lemma 5.12] and Remark 4.2
imply that this map recovers, up to a shift, the map (4.2.1) on graded pieces.

5The lisse motivic filtration Fil⋆lisseK
conn is usually defined only on affine schemes. Here the argument works if Fil⋆E

is a Zariski sheaf of filtered spectra on qcqs schemes, and if its restriction to affine schemes is a multiplicative filtered
module over the lisse motivic filtration Fil⋆lisseK

conn.
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Example 4.5 (Compatibility with cdh-local motivic cohomology). The multiplicative cdh-local filtra-
tion Fil⋆cdhKH ([Bou24, Definition 3.10]) is naturally a module over the multiplicative filtration Fil⋆motK
(e.g., because cdh sheafification preserves multiplicative structures), so the first Chern class for the
cdh-local motivic complexes of [BEM] is compatible with the motivic first Chern class of Definition 4.1.

Example 4.6 (Compatibility with syntomic cohomology). Let X be a qcqs scheme, and p be a prime
number. As explained in [BEM, Remark 5.25], the syntomic first Chern class of [BL22, Section 7] is
compatible with the motivic first Chern class of Definition 4.1 via the motivic-syntomic comparison
map ([Bou24, Construction 5.8]). Note here that the motivic-syntomic comparison map can be seen
as the map induced on graded pieces from a multiplicative map of filtered spectra

Fil⋆motK(X;Zp) −→ Fil⋆motK
Sel(X;Zp),

where the target is the filtration on p-completed Selmer K-theory ([BL22, Remark 8.4.3]). These
motivic and syntomic first Chern classes then coincide with the first Chern classes coming from the
additive invariants K(−;Zp) and KSel(−;Zp) (Remark 4.4).

4.2 P1-bundle formula
In this subsection, we prove that the motivic complexes Z(i)mot satisfy the P1-bundle formula on

qcqs schemes (Theorem 4.7). Note that the P1-bundle formula is unknown for the cdh-local motivic
complexes Z(i)cdh on general qcqs schemes.6 The cartesian square of [Bou24, Remark 3.21] thus cannot
be used directly to prove the P1-bundle formula for the motivic complexes Z(i)mot, as was done by
Elmanto–Morrow in equicharacteristic ([EM23, Section 5]). Instead, we use in a crucial way our main
result on p-adic motivic cohomology ([Bou24, Theorem 5.10]), and a degeneration argument using
Selmer K-theory.

Theorem 4.7 (P1-bundle formula). Let X be a qcqs scheme, and π : P1
X → X be the canonical

projection map. Then for every integer i ∈ Z, the natural map

π∗ ⊕ cmot
1 (O(1))π∗ : Z(i)mot(X)⊕ Z(i− 1)mot(X)[−2] −→ Z(i)mot(P1

X)

is an equivalence in the derived category D(Z).

Using [Bou24, Theorem 5.10], the proof of Theorem 4.7 will reduce to the proof of a similar
equivalence for the cdh sheaves

(
Lcdhτ

>i Fp(i)
syn

)
(−) (Proposition 4.17). Most of this section is

devoted to the study of these cdh sheaves.

Lemma 4.8. Let p be a prime number. Then for any integers i, j ≥ 0 and k ≥ 1, the natural sequence

LNisτ
>jRΓét(−, j!µ⊗i

pk ) −→
(
LNisτ

>j Z /pk(i)syn)(−) −→ (
LNisτ

>j Z /pk(i)BMS)(−)
is a fibre sequence of D(Z /pk)-valued presheaves on qcqs schemes.

Proof. The three presheaves are finitary Nisnevich sheaves, so it suffices to prove the result on henselian
local rings ([CM21, Corollary 3.27 and Example 4.31]). Let A be a henselian local ring. By [BL22,
Remark 8.4.4], there is a natural fibre sequence

RΓét(A, j!µ
⊗i
pk ) −→ Z /pk(i)syn(A) −→ Z /pk(i)BMS(A)

in the derived category D(Z /pk), so it suffices to prove that the natural map

Z /pk(i)syn(A) −→ Z /pk(i)BMS(A)

is surjective in degree j. If p is invertible in the henselian valuation ring A, the target of this map is
zero. If p is not invertible in A, then the valuation ring A is p-henselian, and this map is an equivalence
([Bou24, Notation 5.7]).

6More precisely, Bachmann–Elmanto–Morrow proved in [BEM] that if a qcqs scheme X satisfies that every valuation
ring V with a map Spec(V ) → X is F -smooth, then the cdh-local motivic complexes Z(i)cdh satisfy the P1-bundle formula
at X. In particular, the P1-bundle formula is known for these complexes over a field, and over a mixed characteristic
perfectoid valuation ring by the results of [Bou23], but not on general qcqs schemes.
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Lemma 4.9. Let p be a prime number, and V be a rank one henselian valuation ring of mixed
characteristic (0, p). Then for any integers i ≥ 0 and k ≥ 1, the complex(

Lcdhτ
>iRΓét(−, j!µ⊗i

pk )
)
(P1

V ) ∈ D(Z /pk)

is concentrated in degree i+ 1.7

Proof. The presheaf Lcdhτ
>iRΓét(−, j!µ⊗i

pk ) is the cdh sheafification of a presheaf taking values in
degrees at least i+ 1, so it takes values in degrees at least i+ 1. To prove that the complex(

Lcdhτ
>iRΓét(−, j!µ⊗i

pk )
)
(P1

V ) ∈ D(Z /pk)

is in degrees at most i+ 1, consider the fibre sequence(
Lcdhτ

≤iRΓét(−, j!µ⊗i
pk )

)
(P1

V ) −→ RΓét(P1
V , j!µ

⊗i
pk ) −→

(
Lcdhτ

>iRΓét(−, j!µ⊗i
pk )

)
(P1

V )

in the derived category D(Z /pk), which is a consequence of arc descent for the presheaf RΓét(−, j!µ⊗i
pk )

([BM21, Theorem 1.8]). The scheme P1
V has valuative dimension two, so the complex(

Lcdhτ
≤iRΓét(−, j!µ⊗i

pk )
)
(P1

V ) ∈ D(Z /pk)

is in degrees at most i+ 2 ([EHIK21, Theorem 2.4.15]). By the P1-bundle formula for the presheaves
RΓét(−, j!µ⊗i

pk ) ([BL22, proof of Theorem 9.1.1]), there is a natural equivalence

RΓét(V, j!µ
⊗i
pk )⊕RΓét(V, j!µ

⊗(i−1)

pk )[−2] −→ RΓét(P1
V , j!µ

⊗i
pk )

in the derived category D(Z /pk). The functors RΓét(−, j!µ⊗i
pk ) and RΓét(−, j!µ⊗(i−1)

pk ) are moreover
rigid ([Gab94], see also [BM21, Corollary 1.18 (1)]) and the valuation ring V is p-henselian, so the com-
plex RΓét(P1

V , j!µ
⊗i
pk ) ∈ D(Z /pk) is zero. This implies that the complex

(
Lcdhτ

>iRΓét(−, j!µ⊗i
pk )

)
(P1

V )
is naturally identified with the complex(

Lcdhτ
≤iRΓét(−, j!µ⊗i

pk )
)
(P1

V )[1] ∈ D(Z /pk),

and is thus in degrees at most i+ 1.

Following [EHIK21], we say that a D(Z)-valued presheaf on qcqs schemes satisfies henselian v-
excision if for every henselian valuation ring V and every prime ideal p of V , this presheaf sends the
bicartesian square of commutative rings

V Vp

V/p Vp/pVp

to a cartesian square. Note that in the previous bicartesian square, all the commutative rings are
henselian valuation rings by [EHIK21, Lemma 3.3.5]. The following lemma explains how to use
henselian v-excision to prove that a map of cdh sheaves is an equivalence.

Lemma 4.10. Let S be a qcqs scheme of finite valuative dimension, C be a ∞-category which is
compactly generated by cotruncated objects, and F,G : Schqcqs,op

S → C be finitary cdh sheaves satisfying
henselian v-excision. Then a map of presheaves F → G is an equivalence of presheaves if and only if
the map F (V ) → G(V ) is an equivalence in C for every henselian valuation ring V of rank at most
one with a map Spec(V )→ S.

7We will prove, at the end of Proposition 4.15, that this complex is actually zero.
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Proof. By [EHIK21, Proposition 3.1.8 (2)], a map F → G is an equivalence of presheaves if and only if
it is an equivalence on henselian valuation rings over S. The presheaves F and G being finitary, this
is equivalent to the fact that it is an equivalence on henselian valuation rings of finite rank over S. By
induction, and using henselian v-excision, this is in turn equivalent to the fact that it is an equivalence
on henselian valuation rings of rank at most one over S.

Lemma 4.11. Let p be a prime number. Then for any integers i ≥ 0 and k ≥ 1, the D(Z /pk)-valued
presheaves

(
Lcdhτ

>i Z /pk(i)syn
)
(−) and

(
Lcdhτ

>i Z /pk(i)syn
)
(P1

−) are finitary cdh sheaves on qcqs
schemes, and satisfy henselian v-excision.

Proof. The presheaf Z /pk(i)syn is finitary, and the cdh sheafification of a finitary presheaf is a finitary
cdh sheaf ([Bou24, Lemma 4.57]), so the presheaf

(
Lcdhτ

>i Z /pk(i)syn
)
(−) is a finitary cdh sheaf.

Covers in a site are stable under base change, so the presheaf(
Lcdhτ

>i Z /pk(i)syn)(P1
−)

is also a finitary cdh sheaf. Henselian valuation rings are local rings for the cdh topology, and the
presheaves τ>iRΓét(−, j!µ⊗i

pk ) and τ>i Z /pk(i)BMS are rigid ([Gab94] and [Bou24, Theorem 2.27]), so
the presheaves (

Lcdhτ
>iRΓét(−, j!µ⊗i

pk )
)
(−) and

(
Lcdhτ

>i Z /pk(i)BMS)(−)
satisfy henselian v-excision. By Lemma 4.8 (applied for j = i and after cdh sheafification), the presheaf(
Lcdhτ

>i Z /pk(i)syn
)
(−) then satisfies henselian v-excision. Finally, the presheaf(

Lcdhτ
>i Z /pk(i)syn)(P1

−)

satisfies henselian v-excision, as a consequence of [EHIK21, Lemma 3.3.7], and henselian v-excision for
the presheaf

(
Lcdhτ

>i Z /pk(i)syn
)
(−).

Lemma 4.12. Let B be a commutative ring, π be an element of B, C be a presentable ∞-category,
and F : AlgB → C be a finitary and rigid functor. If the functor F is zero on B[ 1π ]-algebas, then for
every qcqs B-scheme X, the natural map(

LcdhF
)
(X) −→

(
LcdhF

)
(XB/π)

is an equivalence in the ∞-category C.

Proof. Covers in a site are stable under base change, and the cdh sheafification of a finitary presheaf
is finitary, so the presheaf

(LcdhF )(−B/π)

is a finitary cdh sheaf on qcqs B-schemes. It then suffices to prove that for every henselian valuation
ring V which is a B-algebra, the natural map

F (V ) −→
(
LcdhF

)
(V/π)

is an equivalence in the ∞-category C. The presheaf LcdhF is a finitary cdh sheaf, so it is invariant
under nilpotent extensions. In particular, the natural map(

LcdhF
)
(V/π) −→

(
LcdhF

)
(V/

√
(π))

is an equivalence in the ∞-category C. The quotient of a henselian valuation ring by one of its prime
ideals is a henselian valuation ring, so the target of the previous map is naturally identified with the
object F (V/

√
(π)) ∈ C. We finally prove that the natural map

F (V ) −→ F (V/
√

(π))

is an equivalence in the ∞-category C. If π is invertible in the henselian valuation ring V , then both
terms are zero by hypothesis on the functor F . And if π is not invertible in V , then in particular the
henselian local ring V is π-henselian, and the result is a consequence of rigidity for the functor F .
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Corollary 4.13. Let p be a prime number, B be a discrete valuation ring of mixed characteristic
(0, p), π be a uniformizer of B, and X be a qcqs B-scheme. Then for any integers i ≥ 0 and k ≥ 1,
the natural map (

Lcdhτ
>i Z /pk(i)BMS)(X) −→

(
Lcdhτ

>i Z /pk(i)BMS)(XB/π)

is an equivalence in the derived category D(Z /pk).

Proof. The functor
τ>i Z /pk(i)BMS : AlgB −→ D(Z /pk)

is finitary ([Bou24, Theorem 2.25 (2)]) and rigid ([Bou24, Theorem 2.27]). The functor Z /pk(i)BMS is
moreover zero on Z[ 1p ]-algebras ([Bou24, Remark 2.16]), so the result is a consequence of Lemma 4.12.

Remark 4.14. One can prove similarly that Corollary 4.13 holds for B a general valuation ring of
mixed characteristic (0, p), where the base change to the characteristic p field B/π is replaced by the
base change to the characteristic p valuation ring B/

√
(p).

For every qcqs scheme X, the compatibilities between the motivic and syntomic first Chern classes
of Section 4.1 imply that the natural diagram

Z /pk(i)mot(X)⊕ Z /pk(i− 1)mot(X)[−2] Z /pk(i)mot(P1
X)

Z /pk(i)syn(X)⊕ Z /pk(i− 1)syn(X)[−2] Z /pk(i)syn(P1
X)

π∗⊕cmot
1 (O(1))π∗

π∗⊕csyn
1 (O(1))π∗

is commutative. We define the natural map(
Lcdhτ

>i Z /pk(i)syn)(X)⊕
(
Lcdhτ

>i−1 Z /pk(i− 1)syn)(X)[−2] −→
(
Lcdhτ

>i Z /pk(i)syn)(P1
X)

in the derived category D(Z /pk) as the map induced, via [Bou24, Theorem 5.10], by taking cofibres
along the vertical maps of this commutative diagram.

Proposition 4.15. Let p be a prime number, and V be a rank one henselian valuation ring of mixed
characteristic (0, p). Then for any integers i ≥ 0 and k ≥ 1, the natural map

τ>i Z /pk(i)syn(V )⊕
(
τ>i−1 Z /pk(i− 1)syn(V )

)
[−2] −→

(
Lcdhτ

>i Z /pk(i)syn)(P1
V )

is an equivalence in the derived category D(Z /pk).

Proof. The valuation ring V is p-henselian, so the natural maps

τ>i Z /pk(i)syn(V ) −→ τ>i Z /pk(i)BMS(V )

and (
τ>i−1 Z /pk(i− 1)syn(V )

)
[−2] −→

(
τ>i−1 Z /pk(i)BMS(V )

)
[−2]

are equivalences in the derived category D(Z /pk). We first prove that the induced map

τ>i Z /pk(i)BMS(V )⊕
(
τ>i−1 Z /pk(i− 1)BMS(V )

)
[−2] −→

(
Lcdhτ

>i Z /pk(i)BMS)(P1
V )

is an equivalence in the derived category D(Z /pk). Let κ be the residue field of V . By the rigidity
property [Bou24, Theorem 2.27], the natural maps

τ>i Z /pk(i)BMS(V ) −→ τ>i Z /pk(i)BMS(κ)

and (
τ>i−1 Z /pk(i− 1)BMS(V )

)
[−2] −→

(
τ>i−1 Z /pk(i− 1)BMS(κ)

)
[−2]
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are equivalences in the derived category D(Z /pk). By Corollary 4.13, the natural map(
Lcdhτ

>i Z /pk(i)BMS)(P1
V ) −→

(
Lcdhτ

>i Z /pk(i)BMS)(P1
V/p)

is an equivalence in the derived category D(Z /pk). The presheaf (Lcdhτ
>i Z /pk(i)BMS)(P1

−) is more-
over a finitary cdh sheaf, so it is invariant under nilpotent extensions. In particular, the natural
map (

Lcdhτ
>i Z /pk(i)BMS)(P1

V/p) −→
(
Lcdhτ

>i Z /pk(i)BMS)(P1
κ)

is an equivalence in the derived category D(Z /pk). It then suffices to prove that the natural map

τ>i Z /pk(i)BMS(κ)⊕
(
τ>i−1 Z /pk(i− 1)BMS(κ)

)
[−2] −→

(
Lcdhτ

>i Z /pk(i)BMS)(P1
κ)

is an equivalence in the derived category D(Z /pk), and this is a consequence of the P1-bundle for-
mula on characteristic p fields for the presheaves Z /pk(i)cdh ([BEM, Section 8]) and Lcdh Z /pk(i)BMS

([EM23, Lemma 5.17]).
We prove now that the natural map

τ>i Z /pk(i)syn(V )⊕
(
τ>i−1 Z /pk(i− 1)syn(V )

)
[−2] −→

(
Lcdhτ

>i Z /pk(i)syn)(P1
V )

is an equivalence in the derived category D(Z /pk). By Lemma 4.8 (applied for j = i and after cdh
sheafification), we just proved that the cofibre of this map is naturally identified with the complex(

Lcdhτ
>iRΓét(−, j!µ⊗i

pk )
)
(P1

V ) ∈ D(Z /pk).

By Example 4.6, these complexes, indexed by integers i ≥ 0, form the graded pieces of the filtered
spectrum defined as the cofibre of the natural map of filtered spectra

Fil⋆motK(X;Z /pk) −→ Fil⋆motK
Sel(X;Z /pk).

The cofibre of the natural map K(−;Z /pk) → KSel(−;Z /pk), as a cofibre of two additive invariants
of Z-linear ∞-categories, is an additive invariant of Z-linear ∞-categories and, as such, satisfies the
P1-bundle formula ([EM23, Lemma 5.6]). This filtration then induces a spectral sequence

Ei,j
2 = Hi−j

((
Lcdhτ

>−jRΓét(−, j!µ⊗(−j)

pk )
)
(P1

V )
)
=⇒ 0.

By Lemma 4.9, for every integer i ≥ 0, the complex
(
Lcdhτ

>iRΓét(−, j!µ⊗i
pk )

)
(P1

V ) ∈ D(Z /pk) is
concentrated in degree i+1, so this spectral sequence degenerates. This implies the desired equivalence.

Remark 4.16. The proof of Proposition 4.15 uses a reduction to the case of fields of character-
istic p, where the result is a consequence of the P1-bundle formula for the presheaves Z /pk(i)cdh

([BEM, Section 8]) and Lcdh Z /pk(i)BMS ([EM23, Lemma 5.17]). It is however possible to bypass these
two results and prove directly the P1-bundle formula on fields of characteristic p for the presheaves
Lcdhτ

>i Z /pk(i)BMS, by imitating the degeneration argument of [EM23, Lemma 5.17].

Proposition 4.17. Let X be a qcqs scheme, and p be a prime number. Then for any integers i ≥ 0
and k ≥ 1, the natural map(

Lcdhτ
>i Z /pk(i)syn)(X)⊕

(
Lcdhτ

>i−1 Z /pk(i− 1)syn)(X)[−2] −→
(
Lcdhτ

>i Z /pk(i)syn)(P1
X)

is an equivalence in the derived category D(Z /pk).

Proof. The presheaves Lcdhτ
>i Z /pk(i)syn and

(
Lcdhτ

>i Z /pk(i)syn
)
(P1

−) are finitary cdh sheaves on
qcqs schemes, and satisfy henselian v-excision (Lemma 4.11). It then suffices to prove the desired
equivalence for henselian valuation rings of rank at most one (Lemma 4.10). Let V be a henselian
valuation ring of rank at most one.
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If p is invertible in the valuation ring V , then this is equivalent to proving that the natural map

τ>iRΓét(V, µ
⊗i
pk )⊕

(
τ>i−1RΓét(V, µ

⊗(i−1)

pk )
)
[−2] −→

(
Lcdhτ

>iRΓét(−, µ⊗i
pk )

)
(P1

V )

is an equivalence in the derived category D(Z /pk). For every integer i ≥ 0, there is a fibre sequence
of D(Z /pk)-valued presheaves

Z /pk(i)cdh(−) −→ RΓét(−, µ⊗i
pk ) −→ Lcdhτ

>iRΓét(−, µ⊗i
pk )

on qcqs Z[ 1p ]-schemes ([BEM, Theorem 7.14]). The desired equivalence is then a consequence of
the P1-bundle formula on qcqs Z[ 1p ]-schemes for the presheaf Z /pk(i)cdh ([BEM, Section 8]) and the
presheaf RΓét(−, µ⊗i

pk ) ([BL22, proof of Theorem 9.1.1]).
If p is zero in the valuation ring V , then this is a consequence of the P1-bundle formula on qcqs

Fp-schemes for the presheaves Z /pk(i)cdh ([BEM, Section 8]) and Lcdh Z /pk(i)BMS ([EM23, Theo-
rem 5.14]).

If p is neither invertible nor zero in the valuation ring V , then V is a rank one henselian valuation
ring of mixed characteristic (0, p), and the result is Proposition 4.15.

Proof of Theorem 4.7. It suffices to prove the result rationally, and modulo p for every prime number p.
Rationally, the Atiyah–Hirzebruch spectral sequence degenerates ([Bou24, Theorem 4.1]), so the result
is a consequence of the P1-bundle formula for algebraic K-theory (Section 4.1). Let p be a prime
number. By [Bou24, Theorem 5.10], for every integer i ∈ Z, there is a fibre sequence of D(Fp)-valued
presheaves on qcqs schemes

Fp(i)
mot(−) −→ Fp(i)

syn(−) −→
(
Lcdhτ

>i Fp(i)
syn)(−).

By [BL22, Theorem 9.1.1], the natural map

π∗ ⊕ csyn
1 (O(1))π∗ : Fp(i)

syn(X)⊕ Fp(i− 1)syn(X)[−2] −→ Fp(i)
syn(P1

X)

is an equivalence in the derived category D(Fp). The result modulo p is then a consequence of Propo-
sition 4.17.

4.3 Regular blowup and projective bundle formulae
In this subsection, we prove the regular blowup formula for the motivic complexes Z(i)mot (The-

orem 4.18). By an argument of Annala–Iwasa, this and the P1-bundle formula imply the general
projective bundle formula for the motivic complexes Z(i)mot (Theorem 4.19).

Theorem 4.18 (Regular blowup formula). Let Y → Z be a regular closed immersion of qcqs schemes.8
Then for every integer i ≥ 0, the commutative diagram

Z(i)mot(Z) Z(i)mot(Y )

Z(i)mot(BlY (Z)) Z(i)mot(BlY (Z)×Z Y )

is a cartesian square in the derived category D(Z).

Proof. It suffices to prove the result rationally, and modulo p for every prime number p. By definition,
a cdh sheaf sends an abstract blowup square to a cartesian square, and in particular satisfies the regular
blowup formula. By [Bou24, Corollary 4.67], the regular blowup formula for the presheaf Q(i)mot is
then equivalent to the regular blowup formula for the presheaf RΓZar(−,LΩ<i

−Q/Q). And the regular

8A morphism Y → Z is a regular closed immersion if it is a closed immersion, and if Z admits an affine open cover
such that Y is defined by a regular sequence on each of the corresponding affine schemes.
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blowup formula for the presheaf RΓZar(−,LΩ<i
−Q/Q) is a consequence of the fact that for every integer

j ≥ 0, the presheaf RΓZar(−,Lj
−/ Z ⊗Z Q) satisfies the regular blowup formula ([BL22, Lemma 9.4.3]).

Let p be a prime number. Similarly, [Bou24, Corollary 3.26] implies that the regular blowup formula
for the presheaf Fp(i)

mot is equivalent to the regular blowup formula for the presheaf Fp(i)
BMS. By

[AMMN22, Corollary 5.31], there exists an integer m ≥ 0 and an equivalence of presheaves

Fp(i)
BMS(−) ∼−−→ fib

(
can− ϕi : (N≥i∆−{i}/N≥i+m∆−{i})/p −→ (∆−{i}/N≥i+m∆−{i})/p

)
.

In particular, it suffices to prove that for every integer j ≥ 0, the presheaf N j∆−/p satisfies the regular
blowup formula. By [BL22, Remark 5.5.8 and Example 4.7.8], there is a fibre sequence of presheaves

N j∆−{i}/p −→ Filconj
j ∆−/ZpJp̃K/p

Θ+j−−−→ Filconj
j−1∆−/ZpJp̃K/p.

The presheaves Filconj
j ∆−/ZpJp̃K/p and Filconj

j−1∆−/ZpJp̃K/p have finite filtrations with graded pieces given
by modulo p powers of the cotangent complex, and the result is then a consequence of the regular
blowup formula for powers of the cotangent complex ([BL22, Lemma 9.4.3]).

Theorem 4.19 (Projective bundle formula). Let X be a qcqs scheme, r ≥ 1 be an integer, E be a
vector bundle of rank r + 1 on X, and π : PX(E) → X be the projectivisation of E. Then for every
integer i ∈ Z, the natural map

r∑
j=0

cmot
1 (O(1))jπ∗ :

r⊕
j=0

Z(i− j)mot(X)[−2j] −→ Z(i)mot(PX(E))

is an equivalence in the derived category D(Z).

Proof. By Zariski descent, it suffices to consider the case where the vector bundle E is given by Ar+1
X ,

i.e., to prove that the natural map

r∑
j=0

cmot
1 (O(1))jπ∗ :

r⊕
j=0

Z(i− j)mot(X)[−2j] −→ Z(i)mot(Pr
X)

is an equivalence in the derived category D(Z). The presheaves Z(i)mot satisfy the P1-bundle formula
(Theorem 4.7). Moreover, for every qcqs scheme X and every integer m ≥ 0, they send the blowup
square

Pm
X BlX(Am+1

X )

X Am+1
X

0

to a cartesian square in the derived category D(Z) (Theorem 4.18, in the special case where the regular
closed immersion Y → Z is the zero section X → Am+1

X ). By the argument of [AI23, Lemma 3.3.5],
these two properties imply, by induction, the desired projective bundle formula.

In the following result, denote by Z(i)mot
X : Smop

X → D(Z) the Zariski sheaves on smooth schemes
over X induced by restriction of the motivic complexes Z(i)mot.

Corollary 4.20 (Motivic cohomology is represented in motivic spectra). For every qcqs scheme X,
the motivic complexes {Z(i)mot

X }i∈Z are represented by a P1-motivic spectrum in the sense of [AI23].

Proof. By definition of P1-motivic spectra, this is a consequence of elementary blowup excision (which
is a special case of Theorem 4.18) and the P1-bundle formula (Theorem 4.7).
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