
ON THE MOTIVIC COHOMOLOGY OF Z/pn

tess bouis

Abstract

We revisit certain known computations of algebraic K-theory in terms of the motivic complexes
introduced in [EM23, Bou24], focusing on certain classes of schemes for which motivic cohomology
was previously not defined.
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1 Perfect and semiperfect rings
Let p be a prime number. It was proved by Kratzer [Kra80, Corollary 5.5] that for every perfect

Fp-algebra R and every integer n ≥ 1, the K-group Kn(R) is uniquely p-divisible (see also [AMM22] for
a mixed characteristic generalisation). It was also proved by Kelly–Morrow that for every Fp-algebra R
with perfection Rperf, the natural map K(R) → K(Rperf) is an equivalence after inverting p ([KM21,
Lemma 4.1], see also [EK20, Example 2.1.11] and [Cou23, Theorem 3.1.2 and Proposition 3.3.1] for
different proofs). The following result is a motivic refinement of these two facts.

Theorem 1.1 (Motivic cohomology of perfect Fp-schemes, after [EM23]). Let X be a qcqs Fp-scheme.

(1) For every integer i ≥ 0, the natural map

Z(i)mot(X)[ 1p ] −→ Z(i)mot(Xperf)[
1
p ]

is an equivalence in the derived category D(Z[ 1p ]).

(2) For every integer i ≥ 1, the natural map

Z(i)mot(Xperf) −→ Z(i)mot(Xperf)[
1
p ]

is an equivalence in the derived category D(Z).

Proof. By [EM23, Theorem 4.24 (5)],1 for every integer i ≥ 0, the natural map

ϕ∗
X : Z(i)mot(X) −→ Z(i)mot(X)

1This result is proved as a consequence of the same result in classical motivic cohomology [GL00] and in syntomic
cohomology [AMMN22], and ultimately goes back to the fact that the Frobenius acts by multiplication by pi on the
logarithmic de Rham–Witt sheaf WΩi

log.
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induced by the absolute Frobenius ϕX : X → X of a qcqs Fp-scheme X is multiplication by pi. In
particular, this natural map is an equivalence after inverting p, and (1) is a consequence of this and the
fact that the presheaf Z(i)mot is finitary ([EM23, Theorem 4.24 (4)]). Similarly, the same result applied
to the perfect Fp-scheme Xperf implies that multiplication by pi on the complex Z(i)mot(Xperf) ∈ D(Z)
is an equivalence. If i ≥ 1, this is equivalent to the fact that the natural map

Z(i)mot(Xperf) −→ Z(i)mot(Xperf)[
1
p ]

is an equivalence in the derived category D(Z).

Remark 1.2 (Negative K-groups of perfect Fp-algebras). It is possible to construct examples of
perfect Fp-algebras whose negative K-groups are not p-divisible ([Cou23, Section 3.3]). Theorem 1.1 (2)
states that the only non-p-divisible information in the negative K-groups of a perfect Fp-algebra R
actually come from weight zero motivic cohomology, i.e., from the complex RΓcdh(R,Z) ([Bou24,
Example 4.68]).

Recall that a Fp-algebra is semiperfect if its Frobenius is surjective.

Corollary 1.3 (Motivic cohomology of semiperfect Fp-algebras). Let S be a semiperfect Fp-algebra.
Then for every integer i ≥ 1, the natural commutative diagram

Z(i)mot(S) Zp(i)
syn(S)

Z(i)mot(Sperf) Zp(i)
syn(Sperf)

is a cartesian square in the derived category D(Z).

Proof. It suffices to prove the result modulo p, and after inverting p. After inverting p, the vertical
maps become equivalences by Theorem 1.1 (1) (and the same argument for syntomic cohomology). We
prove now the result modulo p. By Theorem 1.1 (2) (and the same argument for syntomic cohomology),
the bottom terms of the commutative diagram are zero modulo p, so it suffices to prove that the natural
map

Fp(i)
mot(S) −→ Fp(i)

syn(S)

is an equivalence in the derived category D(Fp). By [EM23, Corollary 4.32] (see also [Bou24, Theo-
rem 5.10] for a mixed characteristic generalisation), this is equivalent to the fact that

RΓcdh(S, ν̃(i))[−i− 1] ≃ 0

in the derived category D(Fp). By definition, the Frobenius map ϕS : S → S is surjective, and has
nilpotent kernel. The presheaf RΓcdh(−, ν̃(i))[−i− 1] is a finitary cdh sheaf, so the natural map

RΓcdh(S, ν̃(i))[−i− 1] −→ RΓcdh(Sperf, ν̃(i))[−i− 1]

is then an equivalence in the derived category D(Fp). The target of this map is zero by Theorem 1.1 (2)
(where we use that i ≥ 1, and the same argument for syntomic cohomology), and applying [EM23,
Corollary 4.32] to the perfect Fp-algebra Sperf.

2 Finite chain rings
Finite chain rings are commutative rings OK/πn, where OK is a mixed characteristic discrete

valuation ring with finite residue field, π is a uniformizer of OK , and n ≥ 1 is an integer. Examples of
finite chain rings thus include finite fields, rings of the form Z /pn, and truncated polynomials over a
finite field.
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Lemma 2.1. Let OK be a discrete valuation ring of mixed characteristic (0, p) and with finite residue
field Fq, π be a uniformizer of OK , and n ≥ 1 be an integer. Then for every integer i ≥ 0, there is a
natural equivalence

Z(i)mot(OK/πn) ≃
{

Z[0] if i = 0
Zp(i)

BMS(OK/πn)⊕ Z(i)mot(Fq)[
1
p ] if i ≥ 1

in the derived category D(Z).

Proof. The result for i = 0 follows from the equivalences

Z(0)mot(OK/πn) ≃ RΓcdh(OK/πn,Z) ≃ RΓcdh(Fq,Z) ≃ Z[0]

in the derived category D(Z), the first equivalence being [Bou24, Example 4.68], the second equivalence
being nilpotent invariance of cdh sheaves, and the last equivalence being a consequence of the fact that
fields are local for the cdh topology.

For every integer i ≥ 0, the commutative diagram

Z(i)mot(OK/πn) Zp(i)
BMS(OK/πn)

Z(i)mot(Fq) Zp(i)
BMS(Fq)

is a cartesian square in the derived category D(Z) ([Bou24, Proposition 3.29]). If i ≥ 1, the bottom
right term vanishes (use for instance the description of Bhatt–Morrow–Scholze’s syntomic cohomology
in characteristic p in terms of logarithmic de Rham–Witt forms), and there is a natural equivalence

Z(i)mot(Fq)
∼−−→ Z(i)mot(Fq)[

1
p ]

in the derived category D(Z) (by a classical result in motivic cohomology, see also Theorem 1.1 (2) for
a more general statement), hence the desired result.

Proposition 2.2. Let OK be a mixed characteristic discrete valuation ring with finite residue field, π
be a uniformizer of OK , and n ≥ 1 be an integer. Then for every integer m ∈ Z, there is a natural
isomorphism

Km(OK/πn) ∼=


Z if m = 0

H1
mot(OK/πn,Z(i)) if m = 2i− 1, i ≥ 1

H2
mot(OK/πn,Z(i)) if m = 2i− 2, i ≥ 2

0 if m < 0

of abelian groups.

Proof. Let p be the residue characteristic of the discrete valuation ring OK . The result with p-adic
coefficients is [AKN24, Corollary 2.16]. The result with Z[ 1p ]-coefficients reduces to the case n = 1,
where the result follows from the description of the (classical) motivic cohomology of finite fields. The
integral result is then a consequence of Lemma 2.1.

Theorem 2.3 (Motivic cohomology of finite chain rings, after [AKN24]). Let OK be a discrete valua-
tion ring of mixed characteristic (0, p) and with finite residue field Fq, π be a uniformizer of OK , and
n ≥ 1 be an integer. Then for every integer i ≥ 4pn,2 the motivic complex

Z(i)mot(OK/πn) ∈ D(Z)

is concentrated in degree one, where it is given by a group of order (qi − 1)qi(n−1).
2Note that this is not an optimal lower bound on the integer i. See [AKN24, Theorem 1.4] for a more precise result,

in terms of the ramification index of OK .
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Proof. This is a consequence of Lemma 2.1, the classical computation of the motivic cohomology of Fq,
and [AKN24, Theorem 1.4 and Proposition 1.5].

Remark 2.4 (Nilpotence of v1). Antieau–Krause–Nikolaus also determine the nilpotence degree of the
element v1 in the mod p syntomic cohomology of Z /pn ([AKN24, Theorem 1.8]). This is a refinement
of the key result in the study of K(1)-local K-theory of Bhatt–Clausen–Mathew [BCM20]. Note that
this result on the nilpotence degree of v1 can be reformulated, via Lemma 2.1, as a statement on the
mod p motivic cohomology of Z /pn.

3 Valuation rings
Recall that a valuation ring is an integral domain V such that for any elements f and g in V ,

either f ∈ gV or g ∈ fV . In recent years, valuation rings have been used as a way to bypass
resolution of singularities, in order to adapt arguments from characteristic zero to more general contexts
[KST21, KM21, Bou23, BEM]. In this section, we describe the motivic cohomology of valuation rings
(Theorems 3.1 and 3.6). We start with the following result, stating that the motivic complexes Z(i)mot,
on henselian valuation rings, have a description purely in terms of algebraic cycles. See [EM23,
Section 9] for related results over a field.

Theorem 3.1. Let V be a henselian valuation ring. Then for every integer i ≥ 0, the motivic
complex Z(i)mot(V ) ∈ D(Z) is in degrees at most i, and the lisse-motivic comparison map ([Bou25,
Definition 2.1])

Z(i)lisse(V ) −→ Z(i)mot(V )

is an equivalence in the derived category D(Z).

Proof. The second statement already appears in the proof of [Bou25, Lemma 3.25]. As in [Bou25,
Lemma 3.25] or [Bou25, Corollary 2.12], the first statement is then a consequence of [Gei04, Corol-
lary 4.4].

Example 3.2. Let V be a henselian valuation ring. By [Bou24, Example 4.68], there is a natural
equivalence

Z(0)mot(V ) ≃ Z[0]

in the derived category D(Z). Similarly, Theorem 3.1, [Bou24, Example 3.9], and the fact that the
Picard group of a local ring is zero, imply that the motivic complex Z(1)mot(V ) ∈ D(Z) is concentrated
in degree one, where it is given by

H1
mot(V,Z(1)) ∼= V ×.

We now apply the results of the previous sections to give an alternative description of the mo-
tivic cohomology of valuation rings with finite coefficients. The following proposition will be used to
reformulate the results of [Bou23] on syntomic cohomology in terms of motivic cohomology.

Proposition 3.3. Let p be a prime number, and V be a henselian valuation ring. Then for any
integers i ≥ 0 and k ≥ 1, there is a natural equivalence

Z /pk(i)mot(V )
∼−−→ τ≤i Z /pk(i)syn(V )

in the derived category D(Z /pk).

Proof. Henselian valuation rings are local rings for the cdh topology, so this is a consequence of [Bou24,
Theorem 5.10].

The following result is an analogue for valuation rings of Geisser–Levine’s description of motivic
cohomology of smooth Fp-algebras [GL00]. It can be deduced from the results of Kelly–Morrow [KM21]
and Elmanto–Morrow [EM23].
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Theorem 3.4. Let p be a prime number, and V be a henselian valuation ring of characteristic p.
Then for any integers i ≥ 0 and k ≥ 1, there is a natural equivalence

Z /pk(i)mot(V )
∼−−→ WkΩ

i
V,log[−i]

in the derived category D(Z /pk).

Proof. Valuation rings of characteristic p are Cartier smooth over Fp by results of Gabber–Ramero
and Gabber ([Bou23, Theorem 3.4]), so this is a consequence of [LM23, Proposition 5.1 (ii)] and
Proposition 3.3.

We then prove a mixed characteristic version of Theorem 3.4, starting with the following ℓ-adic
general result.

Proposition 3.5. Let p be a prime number, and V be a henselian valuation ring such that p is
invertible in V . Then for any integers i ≥ 0 and k ≥ 1, the Beilinson–Lichtenbaum comparison map
([Bou24, Definition 5.6]) naturally factors through an equivalence

Z /pk(i)mot(V )
∼−−→ τ≤iRΓét(Spec(V ), µ⊗i

pk )

in the derived category D(Z /pk).

Proof. By Proposition 3.3, the motivic complex Z /pk(i)mot(V ) ∈ D(Z /pk) is in degrees at most i, so
the result is a consequence of [Bou24, Corollary 5.6].

The following result generalises Proposition 3.5 when p is not necessarily invertible in the valuation
ring V , at least over a perfectoid base.

Theorem 3.6 (Motivic cohomology of valuation rings with finite coefficients). Let p be a prime
number, V0 be a p-torsionfree valuation ring whose p-completion is a perfectoid ring, and V be a
henselian valuation ring extension of V0. Then for any integers i ≥ 0 and k ≥ 1, the Beilinson–
Lichtenbaum comparison map ([Bou24, Definition 5.3]) induces a natural map

Z /pk(i)mot(V ) −→ τ≤iRΓét(Spec(V [ 1p ]), µ
⊗i
pk )

in the derived category D(Z /pk), which is an isomorphism in degrees less than or equal to i−1. On Hi,
this map is injective, with image generated by symbols, via the symbol map

(V ×)⊗i → Hi
ét(Spec(V [ 1p ]), µ

⊗i
pk ).

Proof. The fact that the Beilinson–Lichtenbaum comparison map factors through the complex

τ≤iRΓét(Spec(V [ 1p ]), µ
⊗i
pk ) ∈ D(Z /pk)

is a consequence of Proposition 3.3. The isomorphism in degrees less than or equal to i − 1 and the
injectivity in degree i of this map are then a consequence of [Bou23, Theorems 3.1 and 4.12]. The last
statement is a consequence of the isomorphism

K̂M
i (V )/pk

∼=−−→ Hi
mot(V,Z /pk(i))

of abelian groups ([Bou25, Theorem 2.21 and Corollary 2.10]).

Remark 3.7. The generation by symbols appearing in Theorem 3.6 was also studied in the context
of syntomic cohomology of general p-torsionfree F -smooth schemes by Bhatt–Mathew [BM23]. Note
that all valuation rings are conjecturally F -smooth, and that the proof of Theorem 3.6 adapts more
generally to any henselian F -smooth valuation ring.
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4 C⋆-algebras
By Gelfand representation theorem, the commutative C⋆-algebras are exactly the algebras of con-

tinuous complex-valued functions C (X;C) on a compact Hausdorff space X. An important theorem
of Cortiñas–Thom states that commutative C⋆-algebras are K-regular ([CT12, Theorem 1.5]). This
result was further generalised recently by Aoki to all smooth algebras over commutative C⋆-algebras,
and over a general local field ([Aok24, Theorem 8.7]). The following result is a motivic analogue of the
latter result.

Theorem 4.1 (C⋆-algebras are motivically regular, after [CT12, Aok24]). Let X be a compact Haus-
dorff space, F be a characteristic zero local field, and A be a smooth C (X;F )-algebra. Then for any
integers i ≥ 0 and n ≥ 0, the natural map

Z(i)mot(A) −→ Z(i)mot(A[T1, . . . , Tn])

is an equivalence in the derived category D(Z).

Proof. By [Aok24, Theorem 8.7 (2)], the natural map

K(A[T1, . . . , Tn]) −→ KH(A[T1, . . . , Tn])

is an equivalence of spectra for every integer n ≥ 0. By [Bou24, Remark 3.27 and Corollary 4.60], this
implies that the vertical maps in the commutative diagram

Z(i)mot(A) Z(i)mot(A[T1, . . . , Tn])

Z(i)A1

(A) Z(i)A1

(A[T1, . . . , Tn])

are equivalences in the derived category D(Z). The bottom horizontal map is an equivalence in the
derived category D(Z) by definition of the presheaf Z(i)A1

([BEM], see also [Bou24, Section 6]). So
the top horizontal map is an equivalence in the derived category D(Z).

5 Truncated polynomials
In this section, we study the motivic cohomology of truncated polynomials, i.e., the motivic coho-

mology of commutative rings of the form R[x]/(xe). Given a D(Z)-valued functor F (−), a commutative
ring R, and an integer e ≥ 1, we use the notation

F (R[x]/(xe), (x)) := fib(F (R[x]/(xe)) −→ F (R)),

where the map is induced by the canonical projection R[x]/(xe) → R.
The relative K-theory K(k[x]/(xe), (x)) of truncated polynomials over a perfect field k of positive

characteristic was computed by Hesselholt–Madsen [HM97b, HM97a], using topological restriction
homology. Their calculation was reproved by Speirs [Spe20] using Nikolaus–Scholze’s approach to
topological cyclic homology [NS18], and by Mathew [Mat22] and Sulyma [Sul23] using Bhatt–Morrow–
Scholze’s filtration on topological cyclic homology [BMS19]. This last approach was then extended
to mixed characteristic by Riggenbach [Rig22]. More precisely, Riggenbach used computations in
prismatic cohomology to extend the previous result to a computation of the p-adic relative K-theory
K(R[x]/(xe), (x);Zp) of perfectoid rings R, and also reproved the p-adic part of the known description
of K(Z[x]/(xe), (x)), originally due to Angeltveit–Gerhardt–Hesselholt [AGH09].

This recent progress would seem to indicate that K-theory calculations using equivariant stable ho-
motopy may be pushed further by using cohomological techniques. Note however that the calculations
in [Mat22, Sul23, Rig22] are purely p-adic ones, as they rely on (instances of) prismatic cohomology.
In fact, all of the previous integral calculations in mixed characteristic (i.e., for R the ring of integers
of a number field) rely on a rational result of Soulé [Sou81] and Staffeldt [Sta85], who compute the

6



Z(i)mot(Z /pn)

ranks of the associated relative K-groups using equivariant homotopy theory. In this section, we revisit
and extend this rational computation, and discuss some natural motivic refinements of the previous
results.

All of the above calculations use trace methods, via the Dundas–Goodwillie–McCarthy theorem.
We first state the corresponding results at the level of cohomology theories.

Lemma 5.1. Let R be a commutative ring, and e ≥ 1 be an integer. Then for every integer i ≥ 0, the
natural map

Z(i)mot(R[x]/(xe), (x)) −→ Z(i)TC(R[x]/(xe), (x))

is an equivalence in the derived category D(Z).

Proof. This is a direct consequence of [Bou24, Remark 3.21], and the fact that cdh sheaves are invariant
under nilpotent extensions.

Corollary 5.2. Let R be a commutative ring, e ≥ 1 be an integer, and p be a prime number. Then
for every integer i ≥ 0, the natural map

Zp(i)
mot(R[x]/(xe), (x)) −→ Zp(i)

BMS(R[x]/(xe), (x))

is an equivalence in the derived category D(Zp).

Proof. This is a consequence of Lemma 5.1.

Corollary 5.3. Let R be a commutative ring, and e ≥ 1 be an integer. Then for every integer i ≥ 0,
there is a natural equivalence

Q(i)mot(R[x]/(xe), (x)) ≃ LΩ<i
(R[x]/(xe),(x))Q/Q[−1]

in the derived category D(Q).

Proof. This is a consequence of Lemma 5.1 and cdh descent for the presheaf L̂Ω−/Q on commutative
Q-algebras ([EM23, Lemma 4.5]).

Lemma 5.4. For every commutative ring R and integer e ≥ 1, the object

Z(0)mot(R[x]/(xe), (x)
)

is zero in the derived category D(Z).

Proof. This is a consequence of the fact that the motivic complex Z(0)mot is a cdh sheaf ([Bou24,
Example 4.68]).

Lemma 5.5. For any integers e ≥ 1 and i ≥ 0, the complex

LΩ≤i
(Q[x]/(xe),(x))/Q ∈ D(Q)

is concentrated in degree zero, given by a Q-vector space of dimension e− 1.

Proof. This follows from a standard argument using the natural grading of the Q-algebra Q[x]/(xe)
and the Q-linear derivation d : Q[x]/(xe) → Q[x]/(xe) given by d(xj) = jxj ; see for instance the proof
of [Sta85, Proposition 5].

Theorem 5.6. Let R be a commutative ring such that the cotangent complex L(R⊗ZQ)/Q vanishes
(e.g., if R ⊗Z Q is ind-étale over Q),3 and e ≥ 1 be an integer. Then for every integer i ≥ 1, there is
a natural equivalence

Q(i)mot(R[x]/(xe), (x)) ≃ (R⊗Z Q)e−1[−1]

in the derived category D(Q).
3See [MM22] for more on this condition.
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Proof. By Corollary 5.3, there is a natural equivalence

Q(i)mot(R[x]/(xe), (x)) ≃ LΩ<i
(R[x]/(xe),(x))Q/Q[−1]

in the derived category D(Q). By the Künneth formula for derived de Rham cohomology, and because
all the positive powers of the cotangent complex L(R⊗ZQ)/Q vanish, there is a natural equivalence

LΩ<i
(R[x]/(xe),(x))Q/Q ≃ LΩ<i

(Q[x]/(xe),(x))/Q ⊗Q R

in the derived category D(Q). The result is then a consequence of Lemma 5.5.

When R is the ring of integers of a number field, the following result is due to Soulé [Sou81] when
e = 2, and to Staffeldt [Sta85] for e ≥ 2 a general integer. Their proof uses rational homotopy theory,
and ultimately reduces to a computation in cyclic homology.

Corollary 5.7. Let R be a commutative ring such that the cotangent complex L(R⊗ZQ)/Q vanishes,
and e ≥ 1 be an integer. Then for every integer n ∈ Z, there is a natural isomorphism

Kn(R[x]/(xe), (x);Q) ∼=
{

(R⊗Z Q)e−1 if n is odd and n ≥ 1
0 otherwise

of abelian groups.

Proof. This is a consequence of Theorem 5.6 and [Bou24, Corollary 4.60].

Remark 5.8. Let K be a number field, OK be its ring of integers, and e ≥ 1 be an integer. The
orders in the torsion part of the relative K-theory K(OK [x]/(xe), (x)) were completely determined in
[Rig22, Remark 1.8]. It would be interesting to use this result and Theorem 5.6 to obtain an integral
description of the relative motivic complexes Z(i)mot(OK [x]/(xe), (x)) for all i ≥ 0. This would in
particular reprove and generalise the result for K = Q of Angeltveit–Gerhardt–Hesselholt [AGH09].

We also deduce from the work of Riggenbach the following motivic interpretation of the analogous
result in K-theory ([Rig22, Theorem 1.1]).

Theorem 5.9 (Truncated polynomials over perfectoids, after [Rig22]). Let R be a perfectoid ring, and
e ≥ 1 be an integer. Then for every integer i ≥ 1, there is a natural equivalence

Zp(i)
mot(R[x]/(xe), (x)) ≃ Wei(R)/VeWi(R)[−1]

in the derived category D(Zp), where W(R) denotes the big Witt vectors of R, and V the associated
Verschiebung operator.

Proof. This is a consequence of [Rig22, proof of Corollary 6.5] and Corollary 5.2.

Remark 5.10 (Cuspidal curves). The algebraic K-theory of cuspidal curves (i.e., curves that are
defined by an equation of the form ya − xb, for a, b ≥ 2 coprime integers) was completely determined
over a perfect Fp-algebra by Hesselholt–Nikolaus [HN20], using Nikolaus–Scholze’s approach [NS18]
to topological cyclic homology. This result was then generalised to mixed characteristic perfectoid
rings by Riggenbach [Rig23], ultimately relying on computations in relative topological Hochschild
homology. It would seem that the associated Atiyah–Hirzebruch spectral sequence should degenerate
in this context, thus providing a similar computation of the motivic cohomology of cuspidal curves.
An interesting question would be whether these results can be reproved, or even extended to more
general base rings, using techniques from prismatic cohomology and derived de Rham cohomology.
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