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Overview

In order to prove the Weil conjectures, relating the geometry of complex varieties
with the number of points of algebraic varieties over finite fields, Grothendieck
introduced the theory of ℓ-adic étale cohomology of algebraic varieties. Inspired
by the underlying conjectural philosophy of motives, Voevodsky then associated
to each algebraic variety X a Z-linear derived category of motives DMpXq, whose
ℓ-adic part is related to the ℓ-adic étale cohomology of X, and whose rational part is
related to the algebraic K-theory of X [Voe00]. Voevodsky’s programme culminated
with the proof of the Bloch–Kato conjecture, relating the étale cohomology of a
field with its Milnor K-theory [Voe11,Rio14].

In parallel to this algebraic story, Tate initiated in [Tat71] the development
of rigid-analytic geometry, as a non-archimedean analogue of complex analytic
geometry. Variants of this theory were further developed by Raynaud [Ray74]
and Huber [Hub96], and the étale cohomology of these rigid-analytic spaces found
applications in several related areas, typically in the proof by Harris–Taylor of
the local Langlands correspondence for GLn [HT01]. A subsequent motivic theory
for rigid-analytic varieties, similar to the algebraic theory of Voevodsky, was then
initiated by Ayoub [Ayo15], and further developed by Ayoub–Gallauer–Vezzani
[AGV22] and Binda–Gallauer–Vezzani [BGV23].

The theory of Berkovich spaces [Ber90], and of their étale cohomology [Ber93],
provides a common framework for algebraic, complex analytic, and rigid-analytic
geometries. The goal of this seminar is to study the recent paper [Sch24], where
Scholze constructs a theory of étale motives for arbitrary Berkovich spaces. This
theory satisfies good categorical properties, and recovers the étale version of Vo-
evodsky’s theory over a discrete field, the theory of Betti sheaves over C, and is
closely related to Ayoub’s theory over a non-archimedean field. To motivate the
constructions of this paper, we will cover some of the relevant background material
on analytic geometry (see for instance [Con07]) and on motivic categories (see for
instance [MVW06]).

Talks

Talk 1: Introduction (Tess Bouis, 28.04.2025). Overview of the seminar and
distribution of the talks. Please attend if you are considering giving a talk.
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Talk 2: Banach rings (Antoine Sedillot, 05.05.2025). Mainly follow [Sch24,
§2]. The goal of this talk is to give intuitions about the basics of Berkovich geometry.
Define the notions of a Banach ring [Sch24, Definitions 2.1 and 2.2], of the Berkovich
spectrum of a Banach ring [Sch24, Definition 2.13]. Discuss (and in particular
compare the algebraic and analytic variants in) the examples of Banach fields, of the
integers Z, of the free Banach algebras over a Banach ring, of the ball, of A1, and
of P1. Several introductury texts are available online; see for instance [Bak08, §1]
for the last example.

Talk 3: The arc-topology (Jeroen Hekking, 12.05.2025). Begin with a
quick reminder on Grothendieck topologies, following for instance [Kha23, §2].
Briefly introduce Bhatt–Mathew’s definition of the (algebraic) arc-topology [BM21,
Definition 1.1] and explain the motivation for this topology via the example of étale
cohomology [BM21, Theorem 1.8]. Then introduce Scholze’s (analytic) arc-topology
in the setting of Banach rings [Sch24, Definition 3.1] and explain quickly why
this defines a Grothendieck topology on (the opposite of) the category of Banach
rings [Sch24, Propositions 3.2 and 3.3]. Explain carefully the fact that strictly totally
disconnected Banach rings form a basis for the arc-topology [Sch24, Definition 3.10
to Theorem 3.13], and how the situation specializes when working over C [Sch24,
Example 3.8 and Proposition 3.9].

Talk 4: Voevodsky/Ayoub’s étale motives (Marc Hoyois, 19.05.2025).
This talk is here to motivate what will happen in the next talks. Introduce
Voevodsky/Ayoub’s category of étale motives associated to a scheme X, and discuss
its basic properties, following [Cis21, §1] or any other resource. Also state the
cancellation theorem.

Talk 5: Definition of Berkovich motives (Johannes Glossner, 26.05.2025).
Define small arc-stacks, and compare this to the definition of Berkovich spaces, as
introduced for instance in [LP24]. Introduce the category of Berkovich motives
DmotpXq associated to a small arc-stack X [Sch24, Definitions 4.10, 5.1, 5.2, 5.18,
and 9.1]. State the cancellation theorem [Sch24, Theorem 1.9], and comment on
how this allows to understand more concretely the category DmotpXq. Discuss some
of the properties of finitary arc-sheaves from [Sch24, §4].

Talk 6: Ball-invariant arc-sheaves (Sebastian Wolf, 02.06.2025). Discuss
some of the properties of ball-invariant finitary arc-sheaves from [Sch24, §5]. Compare
the notions of A1-localisation and B-localisation (see for instance [Sch24, Remark 5.7]
and [KST19, §1.2]). Then discuss some of the categorical properties of Berkovich
motives following [Sch24, §9].

Talk 7: Free motivic sheaves (Denis-Charles Cisinski, 16.06.2025). Intro-
duce and discuss the properties of the free motivic sheaves, following [Sch24, §5.1
and §6]. Discuss in particular the comparison of Berkovich motives with finite
coefficients with ℓ-adic étale sheaves [Sch24, Theorem 6.7].

Talk 8: The cancellation theorem (Han-Ung Kufner, 23.06.2025). State and
prove the cancellation theorem [Sch24, Theorem 7.1]. Compare to the statements
and proofs in the algebraic and rigid-analytic settings (see [Voe10, Bac21] and
[Ayo15,Vez17], respectively).
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Talk 9: The arc-local K-theory (Marco Volpe, 30.06.2025). Recall the
definition of connective K-theory of commutative rings. Say a word about how
algebraic K-theory appears in Voevodsky’s theory of motives. Define the arc-local
K-theory KpRq of a Banach ring R [Sch24, Definition 8.3 and Proposition 8.4], and
explain the rational Adams decomposition [Sch24, Corollary 8.6]. Finally, state the
second part of [Sch24, Theorem 8.13], and explain as much as possible from its
proof.

Talk 10: Rigid categories (Giovanni Rossanigo, 07.07.2025). Give an
introduction to the notions of compactly generated category and of rigid category, as
discussed in [KNP24, §4.3 and §4.4]. Talk in particular about the categorical Künneth
formula [Sch24, Corollary 10.6], state the theorem that the category of Berkovich
motives DmotpXq is rigid under mild assumptions on X [Sch24, Proposition 10.3],
and discuss its proof.

Talk 11: Comparison with Voevodsky/Ayoub’s étale motives (Niklas Kipp,
14.07.2025). Prove that over a discrete field k, Berkovich motives are equivalent to
Voevodsky/Ayoub’s étale motivic sheaves [Sch24, Theorem 11.1]. Then explain the
description of DmotpCq, for C the completed algebraic closure of kppT qq1{2, in terms
of motivic nearby cycles [Sch24, Corollary 11.10], and how this could be used to give
a similar description of DmotpCpq using [Sch24, Proposition 6.8] (see also [BGV23]).
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